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Preface

The purpose of this monograph is to explain and review the chiral soliton
picture for baryons and their low-energy properties. Even though this picture
by now ages almost half a century, it is currently more than ever under intense
investigation. Various revivals have let the model stay modern. Examples that
initiated renewed interest are the quark spin contribution to the nucleon spin
(“proton spin puzzle”) or the quest for pentaquarks and other exotic baryons.

Various motivations for soliton models can be thought of. Mostly they
relate to the observed flavor and chiral symmetries of strong interactions
and properties of quantum chromodynamics (QCD) when it is generalized
to contain infinitely many color degrees of freedom. The author is fully aware
that there is anything but an inevitable derivation of the soliton picture from
QCD. This probably is a common characteristic of any model attempting to
describe baryon properties at low energies. Chiral soliton models certainly do
have their limitations. However, they definitely possess a degree of straight-
forwardness uncommon to other models for hadrons. It is the author’s hope
that the reader will appreciate the attractive beauty resulting thereof. Quite
a number of arguments and conclusions presented in this monograph reflect
the author’s personal opinion. Yet, the interested reader should be able to
gain an objective point of view from the comprehensive list of references that
is included.

There are actually many variants of soliton models on the market: start-
ing from the famous Skyrme model of pion fields via vector meson extensions
to bosonized formulations of the quark flavor dynamics. They will all be dis-
cussed here. Though different variants highlight different issues, it should be-
come clear that they have more features in common than in distinction. In
particular, the comprehensive discussion on solitons in models for the quark
flavor dynamics (Chaps. 2 and 3) is intended to demonstrate that quark and
soliton models have indeed a common base. Even though actual explorations
in the soliton picture differ considerably from those in quark models, to a
large extent these differences just reflect the use of different field variables.



VI Preface

Some of the topics discussed here have already been reviewed in detail
elsewhere. Nevertheless, it might be illuminating to get a different view on
similar issues. In addition there are issues that have not been reviewed so far
and they motivate this monograph all the more.

Not all the detailed and lengthy calculations will be made explicit. How-
ever, the tools provided should enable the interested reader to follow the orig-
inal research articles or perform the computations independently. Some basic
knowledge of quantum field theory, including its path integral formulation, is
presupposed. It is also assumed that the reader has some basic knowledge of
the representations of the groups SU(2) and SU(3).

These lecture notes distinguish two styles. Chapters 1 through 6 discuss
the basics of the soliton model for baryons, i.e., the motivation, the existence
of solitons and their interpretation as baryons. These chapters are very de-
tailed and with the help of the appendices the interested reader should be
able to redo all the relevant calculations. In particular, beginners in the field
will hopefully find this part of the monograph illuminating since one of its
major purposes is to cover the gap between standard textbooks and current
research. Chapter 1 introduces the subject. The following two chapters review
the motivation of soliton models from the quark flavor dynamics. Here we will
focus on the Nambu–Jona–Lasino model and explain how the soliton picture
emerges from a microscopic quark model that contains all features of chiral
symmetry. In Chap. 4 we will particularly examine the Skyrme model and
also present the large-NC arguments that motivate this model. In Chaps. 5
and 6 we will discuss the quantization of the soliton to generate states with
good baryon quantum numbers. In particular we will show in Chap. 6 that the
baryon number one soliton must be quantized as a fermion. Effectively it is not
possible to completely cover the voluminous amount of research that has been
assembled in the field. Therefore the remaining chapters serve as survey on
static baryon properties (Chap. 7), meson–baryon scattering (Chap. 8), exotic
pentaquark baryons (Chap. 9) and systems with baryon number larger than
one (Chap. 10). This review part should enable the reader to follow the origi-
nal research papers that are vastly cited. This Monograph is round off with a
short epilogue. A few appendices are included to facilitate comprehension of
the calculations in the main body of this monograph.

Many people have contributed to the compilation of this monograph in
various ways, e.g., direct collaborations and fruitful discussions over many
years. This help is highly appreciated. I am afraid that the following list of
names is incomplete: G. Holzwarth, J. Schechter, R. L. Jaffe, H. Reinhardt, H.
Walliser, B. Schwesinger, A. Hayashi, N. W. Park, R. Alkofer, Ulf G. Meißner,
L. Gamberg, N. N. Scoccola, E. Ruiz Arriola, M. Quandt, O. Schröder. Their
insight and expertise has proven indispensable.

The Physics Department at Siegen University is thanked for providing an
environment that enabled completion of this monograph.

Siegen, July 2007 Herbert Weigel



Contents

1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Quark Flavor Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Chiral Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Dynamical Breaking of Chiral Symmetry . . . . . . . . . . . . . . . . . . . 6
2.3 The Nambu–Jona–Lasinio Model . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Gradient Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 PCAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Relation to Instanton Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Final Note on Chiral Quark Models . . . . . . . . . . . . . . . . . . . . . . . . 24
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Self-consistent Soliton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Static Energy Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Soliton Solutions in NJL-Type Models . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Pseudoscalar Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Vector and Axial-Vector Fields . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Remark on the ω Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Comments on Scalar Fields . . . . . . . . . . . . . . . . . . . . . . . . . 40

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 The Skyrme Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1 Large-NC Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Baryons in Large-NC QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 A Simple Soliton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Skyrme Model Soliton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Equations of Motion and Wess–Zumino Term . . . . . . . . . . . . . . . 55
4.6 Topological Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



VIII Contents

4.7 Vector Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Soliton Quantization in Flavor SU(2) . . . . . . . . . . . . . . . . . . . . . . 65
5.1 Collective Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Quantization of the SU(N) Rigid Top . . . . . . . . . . . . . . . . . . . . . 67
5.3 Nucleon and Δ States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Nucleon Static Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Quantization in Vector Meson Models . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Quantization in Chiral Quark Models . . . . . . . . . . . . . . . . . . . . . . 81
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Soliton Quantization in Flavor SU(3) . . . . . . . . . . . . . . . . . . . . . . 85
6.1 Baryon States in the Non-relativistic Quark Model . . . . . . . . . . 85
6.2 Quantization of the Soliton in the Flavor Symmetric Case . . . . 86
6.3 Flavor Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4 Diagonalization with Flavor Symmetry Breaking . . . . . . . . . . . . 96
6.5 Beyond the Classical Hedgehog Solution . . . . . . . . . . . . . . . . . . . . 98
6.6 Bound State Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.7 Baryons with a Heavy Valence Quark . . . . . . . . . . . . . . . . . . . . . . 105
6.8 Brief Summary on Soliton Quantization . . . . . . . . . . . . . . . . . . . . 110
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Baryon Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.1 Electromagnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2 Relativistic Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3 Axial Charges and Hyperon Decays . . . . . . . . . . . . . . . . . . . . . . . . 120
7.4 Proton Spin Puzzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.5 Strangeness in the Nucleon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.6 Neutron–Proton Mass Difference . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.7 Nucleon Structure Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8 Meson–Baryon Scattering in Chiral Soliton Models . . . . . . . . 147
8.1 Adiabatic Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.2 S-Wave Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.3 P-Wave Scattering and the Yukawa Problem . . . . . . . . . . . . . . . . 156
8.4 Photoproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.5 Non-harmonic Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.6 Estimate of Quantum Corrections in Soliton Models . . . . . . . . . 171
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178



Contents IX

9 Exotic Baryons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
9.1 Exotic Flavor Structure and Spectrum . . . . . . . . . . . . . . . . . . . . . 182
9.2 Spectrum and Mixing Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.3 The Myth of the Narrow Pentaquark . . . . . . . . . . . . . . . . . . . . . . . 190
9.4 Rigid Rotator at Arbitrary NC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.5 Solution to the Yukawa Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.6 Skyrme Model Results for the Pentaquark Width . . . . . . . . . . . . 203
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

10 Multi-baryon Systems in the Skyrme Model . . . . . . . . . . . . . . . 207
10.1 Static Configurations with B ≥ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 207
10.2 Product Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
10.3 Nucleon–Nucleon Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
10.4 Towards Dense Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
10.5 An Application to Heavy Ion Collisions . . . . . . . . . . . . . . . . . . . . 220
10.6 The H-dibaryon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

A: Chiral Properties of Quark Bilinears . . . . . . . . . . . . . . . . . . . . . . . . 233
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

B: Functional Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

C: Baryon Current and Wess–Zumino Term . . . . . . . . . . . . . . . . . . . 243
C.1 Gradient Expansion of the Fermion Determinant with a

Baryon Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
C.2 Gauging the Wess–Zumino Term . . . . . . . . . . . . . . . . . . . . . . . . . . 246
C.3 Wess–Zumino Term in the Bound State Approach . . . . . . . . . . . 249
C.4 π0 Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

D: SU (3) Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

E: Matrix Elements of Momentum Eigenstates . . . . . . . . . . . . . . . . 259
E.1 Momentum Eigenstates from Collective Coordinates . . . . . . . . . 259
E.2 Relativistic Recoil Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Recoupling Coefficients in Adiabatic Scattering . . . . . . . . . . . . . . . . 265
F.1 Adiabatic Recoupling Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 265
F.2 Jost Function for Intrinsic Fluctuations . . . . . . . . . . . . . . . . . . . . 267
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271





1

Introduction and Motivation

It is of general interest to understand the structure and dynamics of the build-
ing blocks of matter. We do well know that matter is composed of atoms. An
atom in turn is described as an electron cloud being bound to a nucleus
through the electro-magnetic interaction. Furthermore, the nucleus itself con-
tains still more elementary particles, protons and neutrons. They are members
of a larger group of particles, the baryons. Together with the mesons (pions,
kaons, etc.), the baryons form the even larger group of hadrons that comprise
all particles that are subject to the strong interaction. In comparison with the
electro-magnetic interaction, our understanding of the strong interaction falls
short and many aspects await thorough explanations. Nowadays we utilize rel-
ativistic quantum field theories (QFT) to investigate elementary particles and
their interactions. For example, the electro-magnetic interaction is understood
as the exchange of massless quanta (photons) between charged particles. This
theory is called quantum electrodynamics (QED) and formally makes up an
abelian gauge group. Unfortunately, the solutions of QFTs are mostly inac-
cessible outside the perturbation expansion, and often the very knowledge of
the relevant quantum theory may be of only limited help to describe observed
physical processes.

It is well established that the theory of quantum chromodynamics (QCD)
is the fundamental theory for the strong interaction processes of hadrons [1, 2].
In this theory, hadrons are considered as complicated composites of quarks
and gluons. The interaction of these fields is described within the framework
of a non-abelian gauge theory, the gauge group being color SU(3). The quark
fields are assigned to the fundamental representation while the gluons, which
are the gauge bosons mediating the interaction, reside in the adjoint repre-
sentation. In that respect, QCD is a (complicated) generalization of QED.
Although we are still lacking a rigorous proof, the confinement hypothesis
is commonly accepted. It states that only color singlet objects are observ-
able. These singlet states represent the physical hadrons. The solution to the
renormalization group equation tells us that the QCD coupling decreases with
increasing momentum transfer (asymptotic freedom). In this energy regime,

H. Weigel: Introduction and Motivation, Lect. Notes Phys. 743, 1–4 (2008)
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2 1 Introduction and Motivation

QCD can therefore be treated within perturbation theory. The predictions,
which result from these analyses of QCD, agree favorably with the experimen-
tal data obtained, e.g., in deep inelastic scattering (DIS) processes. However,
the behavior of the solution to the renormalization group equation unfortu-
nately prohibits the application of perturbative techniques in the low-energy
region. This property of QCD complicates matters significantly and we obvi-
ously lack a description of hadrons from first principles, except maybe lattice
measurements. In order to describe the low-energy properties of hadrons, it
is thus mandatory to revert to models which can be deduced or at least be
motivated from QCD.

The motivation of these approaches commonly resides on (i) investigating
QCD for special, eventually even unphysical cases for which a deeper insight
exists, (ii) exploring the symmetries of QCD, or (iii) both. In the context of
building hadron models, the large NC generalization of QCD and its (approx-
imate) chiral symmetry are of particular importance. The large NC general-
ization concerns the number of color degrees of freedom which in reality is
NC = 3, the dimension of the QCD gauge group. Combinatoric considera-
tions allow us to identify the leading contributions to the Green’s functions in
a 1/NC expansion which in turn provides an analog classification of hadron
properties. The chiral properties of QCD emerge from the observation that
in the strong interaction an additional axial symmetry exists besides the ex-
pected vector symmetry, due to the smallness of the current quark masses. The
interesting feature of the combined, so-called chiral symmetry is that observa-
tions from phenomenology dictate this symmetry to be spontaneously broken,
i.e., realized in Nambu–Goldstone mode. Implementation of this feature has
dramatic consequences on any model for hadron dynamics.

Once a model is given that reflects the symmetries of QCD, it is merely a
matter of technical efforts to find the corresponding currents. In turn (static)
properties of hadrons can be computed as matrix elements of these currents.
Along this path, we will investigate the structure of hadrons in chiral models.

In the course of this monograph, we will extensively explore both the large
NC generalization and the chiral aspects of QCD but will not attempt a de-
tailed exploration of QCD itself. We will find that both motivate the descrip-
tion of baryons as solitons, the so-called Skyrme approach as an outstanding
model to analyze baryon properties. This model treats the baryons as collec-
tive excitations of meson fields. In particular, the knowledge of the physics of
the low-lying mesons provides an exhaustive amount of (almost) parameter-
free predictions of properties of baryons. As an additional advantage over
many other models, the soliton description represents a means for studying
various aspects (spectrum, electromagnetic and axial form factors, meson–
baryon scattering, baryon–baryon interaction, etc.) within a unique frame-
work without making any further assumptions about the structure and/or
dynamics of particles. Before we analyze the Skyrme approach in detail, it
is appropriate to straighten up a few misconceptions about this description.
The Skyrme approach has sometimes been criticized as being too crude. This
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criticism is based on the issue that the original Skyrme model, which only
contains pseudoscalar degrees of freedom, yields qualitatively incorrect pre-
dictions on several baryon observables. Many of these problems are linked to
the feature that the pseudoscalar fields contain the long-range physics only.
Suitable extensions of the model to account for short-range effects as well
provide appealing solutions to these problems. Nevertheless, most of the dis-
cussion presented here will be limited to the Skyrme model for the pure reason
of simplicity. However, such extensions will be explained in more detail when
they lead to qualitatively different results.

To begin any thorough discussion of the model, we need to state our under-
standing of solitons in a field theory. Essentially, this comprises two properties:

• solutions to the (classical) equations of motion,
• localized energy density and finite total energy.

This finite total energy is often referred to as the soliton mass. In order to
meet these properties, non-linear features must be operative. Thus, solitons
must be non-perturbative structures within the field theory. The incorpora-
tion of chiral symmetry and its spontaneous breaking will indeed cause model
Lagrangians to be highly non-linear. Furthermore, field configurations that
deviate (slightly) from the soliton may be considered. The effects of these
deviations can be classified in a 1/NC expansion, thereby making contact
with the large NC generalization of QCD. Some of the solitons are addition-
ally characterized by topological properties, in particular a winding number.
Though such topological features are crucial and fascinating (The interested
reader may, e.g., consult the textbook [3].), this monograph will focus on the
relevance of soliton models for hadron phenomenology.

It is worthwhile to reflect on the history of Skyrme soliton models not
only because they preceded the development of QCD but also to observe the
various ups and downs of these models. Above we have discussed the “mod-
ern” justification of the Skyrme model via the 1/NC expansion and sponta-
neous breaking of chiral symmetry. Naturally, one wonders how they relate to
Skyrme’s original motivations. We are fortunate in having available a recon-
structed talk on just this topic by Skyrme [4]. He mentioned three motivations:
(i) the idea of unifying bosons and fermions in a common framework; (ii) the
feeling that point particles are inconsistent in the sense that their quantum
field theory formulation introduces infinities which are only “swept under the
rug” by the renormalization process; and (iii) the desire to eliminate fermions
from a fundamental formulation since fermions have no simple classical ana-
log. So, Skyrme did not choose his Lagrangian model to describe spontaneous
breakdown of chiral symmetry; rather, the non-linear form was adopted to
insure that the pions were “angular” variables which would give multi-valued
functions; the crossing of different sheets of these functions might then corre-
spond to singularities which would realize the baryons. The evident “moral”
of this historical discussion is just that interesting ideas have an uncanny
way of turning out to be useful and true. In the modern framework, the idea
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to describe baryons as solitons was revived by Witten in 1979 when he ar-
gued that baryons indeed emerge as solitons in the large NC generalization
of QCD [5]. Later, he also showed that the baryon number arises from the
topological properties of the soliton [6]. In 1983, first concrete computations
on the spectrum and static properties were pioneered by Adkins, Nappi, and
Witten in the model with two light flavors [7]. Though that was quite success-
ful, some problems such as the too low prediction for the nucleon axial charge
lingered unsolved over the years. A second revival of the Skyrme model was
triggered by the EMC observation that the quark spin contribution to the
total nucleon spin was unexpectedly small, if not even zero, a feature that
was unexpected in quark models but could be nicely understood in the soli-
ton model [8]. This furthermore triggered intensive studies of the three-flavor
model [9] and the exploration of the nucleon’s strangeness content. In this
respect, it is noteworthy that soliton models do not face the so-called missing
resonance problem of (non-relativistic) constituent quark models (this notion
is misleading as those models predict too many baryon states [10]). Almost
naturally, the extension to flavor SU(3) also let into the discussion of exotic
baryons because they emerge as (flavor) rotational excitations of the nucleon.
For that reason, soliton models predict exotic baryons to be lighter than, e.g.,
constituent quark models do. Though the early and most stimulating soliton
model predictions [11] for properties of exotic baryons were only a little better
than just good guesses, they ignited a wealth of research, both on the theory
and on the experimental side. At this point of time, we still have to await the
ultimate confirmation or rejection of exotic baryons.
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2

Quark Flavor Interaction

The description of the low-energy physics of hadrons requires to model the in-
teraction of the quark constituents. The observation that the (current) quark
masses of the up (u) and down (d) quarks (and eventually the strange (s)
quark) are significantly smaller than typical strong interaction energy scales
serves as a major input. In a first approach it is thus reasonable to ignore the
effects of the current quark masses. In that approximation axial transforma-
tions leave the QCD Lagrangian invariant and an additional global symmetry,
the so-called chiral symmetry [1], emerges. This symmetry represents an im-
portant tool for model building because the models should be consistent with
chiral symmetry. Any such model describes the interaction of light quarks
with different flavors: up, down and eventually strange; hence the notion of
quark flavor dynamics.

2.1 Chiral Symmetry

In the case of massless Dirac fermions that interact with boson fields via a
vector interaction (as in QCD), left- and right-handed components

ΨL,R =
1
2

(1 ∓ γ5)Ψ (2.1)

of the 4 × 4 spinors Ψ decouple. As a consequence the QCD Lagrangian
with zero current masses decomposes into a sum of two Lagrangians that
contain only right-(left-) handed fields, respectively. These two Lagrangians
are invariant under global unitary flavor transformations of the correspond-
ing right-(left-) handed fields, so that the QCD Lagrangian possesses an
UL(Nf)×UR(Nf) symmetry. Here Nf is the number of quark flavors whose cur-
rent quark masses are ignored. Depending on whether we consider the strange
current quark mass as large or small we have Nf = 2 or Nf = 3, respectively.
This symmetry group factorizes according to

H. Weigel: Quark Flavor Interaction, Lect. Notes Phys. 743, 5–26 (2008)
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6 2 Quark Flavor Interaction

UL(Nf) × UR(Nf) ∼= UL+R(1) × UL−R(1) × SUL(Nf) × SUR(Nf) (2.2)

and is called the chiral group. The invariance under UL+R(1) is responsible for
the conservation of baryon number whereas UL−R(1) is subject to a quantum
anomaly [2, 3]. This results in 2Nf − 1 conserved flavor currents. The 2Nf

flavor currents are most conveniently presented as linear combination of the
left- and right-handed vector currents that are eigenstates of parity: the vector
current Jaμ and the axial vector current Aaμ,

Jaμ = q̄Lγμ
λa
2
qL + q̄Rγμ

λa
2
qR = q̄γμ

λa
2
q

Aaμ = −q̄Lγμ
λa
2
qL + q̄Rγμ

λa
2
qR = q̄γμγ5

λa
2
q . (2.3)

Here λa (a = 1, . . . , N2
f − 1) are the Gell–Mann matrices of SU(Nf) and

λ0 =
√

2/Nf 1 is proportional to the unit matrix in flavor space. The spinors
are additionally column vectors with Nf entries of the quark flavors

q =

⎛

⎜
⎜
⎜
⎝

Ψ1

Ψ2

...
ΨNf

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

Ψu

Ψd

...
ΨNf

⎞

⎟
⎟
⎟
⎠
. (2.4)

The properties of these fermion fields under infinitesimal chiral transforma-
tions, (2.2), are summarized in Table A.1 of Appendix A. In the limit of
vanishing current quark masses the above currents, apart from A0

μ, are con-
served and that property should be reproduced within any model. In case
these masses are non-zero but nevertheless identical for all flavors the vector
current Jaμ is still conserved for a = 0, . . . , Nf . The non-conservation of A0

μ

can, e.g., be computed in a functional language [4] where it arises from the
measure of the fermion fields not being invariant under chiral transformations.
This non-conservation can be quantified,

√
Nf

2
∂μA0

μ = − g2

8π2
tr
(
F̃μνF

μν
)

+ · · · . (2.5)

Here the trace goes over all discrete indices of the vector gauge fields to which
the fermions, (2.4) couple, e.g., color, charge and/or flavor. Furthermore Fμν
is the field strength of the vector field that couples with coupling constant
g to the fermions and F̃μν is dual to Fμν . The ellipsis refer to contribu-
tions that stem from finite current quark masses. A direct consequence of this
anomaly is the neutral pion decay into two photons. That effect is discussed in
C.4.

2.2 Dynamical Breaking of Chiral Symmetry

In general, symmetries like (2.2) can be realized by the particle content of the
theory in two scenarios:
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• Wigner–Weyl realization: the vacuum (lowest energy) configuration is
invariant under the symmetry and the generators of the symmetry trans-
form degenerate physical states into one another.

• Nambu–Goldstone realization (also called spontaneous symmetry break-
ing): the vacuum configuration is not invariant under the symmetry, rather
the lowest energy state is degenerate. Operators that do not transform
as singlets under the symmetry develop non-zero vacuum expectation val-
ues (VEV). Acting with the symmetry generators on such operators excites
massless modes, the so-called Goldstone bosons (instead of transforming
into other physical states). States that are related to one another by gen-
erators that do not commute with operators that possess non-zero VEVs
are not degenerate.

Now it is for nature to decide which realization is put into effect. Since
states of different chirality carry opposite parity, the question to be answered
is whether or not the states of opposite parity are degenerate. For this purpose
it is illuminating to consider the spectrum of the low-lying mesons as sketched
in Fig. 2.1. Obviously the degeneracy expected in the Wigner–Weyl realiza-
tion is not seen for the scalar and pseudoscalar mesons. While scalar meson
masses are several hundred MeV (these states are quite broad, in addition)
the pseudoscalar mesons start at a little above 100 MeV. As a matter of fact,
and as we will recognize later, their small masses are solely due to non-zero
current quark masses. Stated otherwise, the pseudoscalar mesons would have
zero mass in the ideal world of massless current quarks. We conclude that
chiral symmetry is realized in the Nambu–Goldstone phase with the pseu-
doscalar mesons being the (would-be) Goldstone modes. The only exception

0–
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1000

1500

π

η

η|

ρ
ω

K*
a1

K

0

MeV
M

0+

f0 (σ)

1+1–

Fig. 2.1. Sketch of the spectrum of the low-lying mesons. Left panel: pseu-
doscalars (0−), vectors (1−) and axial vectors (1+); right panel: scalars (0+). Data
taken from the particle data group [5]. This graphic is to illustrate the difference
between the 0− and 0+ spectra. An updated account on the spectra in the scalar
sector is given in the proceedings [6] and references therein
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is the η′ (or a linear combination of octet and singlet ηs) that remains massive
even when the current quark masses are sent to zero. QCD does not have a
UA(1) symmetry because of the anomaly (2.5) and the fact that there are field
configurations in QCD (instantons) for which the spatial integral of the right
hand side of (2.5) does not vanish even though this four dimensional integral
can be transformed into a three dimensional surface integral. Instantons will
be discussed in Sect. 2.6; here it suffices to remark that they induce inter-
actions [7] that upon bosonization (to be described in the following section)
provide a mass term for pseudoscalar flavor singlet meson [8, 9]. This explains
the absence of a (would-be) Goldstone boson for the spontaneously broken
UA(1) symmetry.

Hence the meson spectrum suggests that in the limit of massless quarks
only the vector symmetry is realized in the spectrum while the axial symmetry
is spontaneously broken. That is, there is an operator that is invariant under
vector transformations but not under axial transformations. Noting that vec-
tor transformations do alter left- and right-handed spinors equally while axial
transformations do not and that

Ψ̄Ψ = Ψ̄LΨR + Ψ̄RΨL , (2.6)

it is perspicuous that the simplest such operator is q̄q and that the dynamics
of QCD imply a non-zero quark condensate,

〈q̄q〉 �= 0 . (2.7)

Model building therefore requires to

(i) Find a simple mechanism that yields such a VEV or
(ii) Start from a formulation that has (2.7) built in.

In the next subsection we will discuss the Nambu–Jona–Lasinio model [10, 11]
as a (simple) example to follow path (i). On the other hand, treatments like
chiral perturbation theory [12, 13, 14, 15, 16] are designed according to (ii).

2.3 The Nambu–Jona–Lasinio Model

To be specific we will consider the Nambu–Jona–Lasinio (NJL) model de-
scribed by the Lagrangian (For reviews see, e.g., [17, 18, 19].)

LNJL = q̄(i∂/− m̂0)q + 2G1

N2
f −1∑

a=0

((
q̄
λa
2
q

)2

+
(
q̄
λa
2

iγ5q

)2
)

−2G2

N2
f −1∑

a=0

((
q̄
λa
2
γμq

)2

+
(
q̄
λa
2
γ5γμq

)2
)

, (2.8)

where m̂0 = diag (mu,md, . . . ,mNf ) is the current quark mass matrix and
G1,2 are two so-far undetermined coupling constants. The discussion and re-
sults of Appendix A immediately show that the interaction terms in (2.8) are
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invariant under chiral transformations, (2.2). Hence chiral symmetry is only
broken by the small current quark masses.

This type of model can, e.g., be motivated from QCD by Fierz-trans-
formation of the color current–current interaction that emerges after
integrating out the gluon fields [19] and omitting 1/NC-suppressed diquark-
correlations. An easily traceable calculation is that of [20]. Here we only men-
tion that this scenario yields Gi ∝ g2

QCD × O(N0
C), where gQCD is the QCD

gauge coupling. Later we will argue that a sensible generalization of QCD to
arbitrary NC requires gQCD = O(1/

√
NC), cf. (4.1), and thus Gi = O(1/NC).

We want to express the quark (fermion) theory in (2.8) as an effective
meson (boson) theory. Since the interaction is quartic in the quark spinors, this
is actually straightforward and merely requires the completion of squares [21].
Consider, e.g.,

1
8G1

S2
a − Saq̄

λa
2
q =

1
8G1

(
Sa + 4G1q̄

λa
2
q

)2

− 2G1

(
q̄
λa
2
q

)2

(2.9)

and functionally integrate over the auxiliary (meson) field Sa,

exp

[

i
∫

d4x 2G1

(
q̄
λa
2
q

)2
]

=

∫
[DSa] exp

[
−i
∫

d4x

(
1

8G1
S2

a + Saq̄
λa
2
q

)]
(2.10)

up to a normalization constant. Of course, analogous relations hold for the
remaining interaction terms. Combining all auxiliary fields into a single matrix
valued meson field Φ allows us to formally write the generating functional as

ZNJL =
∫

[Dq] [Dq̄] exp
(

i
∫

d4xLNJL

)

=
∫

[DΦ] exp
(
− i

2

∫
d4x trF

[
(Φ − m̂0)Q−1 (Φ − m̂0)

]
)

×
∫

[Dq] [Dq̄] exp
(

i
∫

d4xq̄ (i∂/− Φ · Λ) q
)
. (2.11)

Here “trF” denotes the trace in flavor space and the current quark mass ma-
trix has been absorbed into a constant shift of Φ. Furthermore shorthand
(matrix) notations are utilized for the flavor–Dirac structure (Λ) and the cou-
pling constants (Q) that occur in the interaction terms of (2.8). Rather than
giving them explicitly, we decompose the generic meson field Φ into irreducible
Lorentz tensors

Φ · Λ = S + iγ5P − V/ −A/γ5 . (2.12)

Here S, P , V and A are scalar, pseudoscalar, vector and axial-vector fields,
respectively. They are all hermitian matrices in flavor space. Furthermore the
decomposition, (2.12), provides a transparent expression
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1
2 tr(Φ − m̂0)Q−1(Φ − m̂0) = 1

4G1
tr((S − m̂0)2 + P 2)

− 1
4G2

tr(VμV μ + AμA
μ) , (2.13)

for the argument that appears in the exponential of the mesonic part of the
generating functional. When convenient, we will use Φ as a short-hand nota-
tion for all fields S, P , V and A and combine scalar and pseudoscalar fields
to M = S + iP and M † = S − iP .

The generating functional factorizes into mesonic and fermionic parts with
a generalized Yukawa interaction between mesons and fermions. In (2.11) the
quark field appears bilinearly in the exponent and can now be integrated out.
This integration yields the determinant of the operator in between the spinors.
Using the identity log Det(A) = Tr log(A) finally leads to a purely mesonic
theory A[Φ] that is given by

ZNJL =
∫

[DΦ] exp (iA[Φ]) with

A[Φ] = −1
2

∫
d4x (Φ − m̂0)Q−1(Φ − m̂0) − i Tr log(i∂/− Φ). (2.14)

Here Tr denotes the functional trace that also includes space–time integration
on top of summing over discrete indices. The quarks carry color degrees of
freedom. Yet the NJL-model interaction is color neutral, so the associated
trace merely causes multiplication by NC, the number of color degrees of
freedom, i.e., Tr → NCTrDF, with the latter trace involving only Dirac and
flavor discrete indices (together with space–time integration).

In (2.14) we have essentially met our goal to bosonize the fermion model.
Of course, the interaction in (2.8) has been “invented” to exactly facilitate
that goal. In (2.14) we sum up all one fermion loop diagrams, i.e., A[Φ] is
complete at O(�). The full quantum action of the NJL-model also contains
higher order contributions. In the present treatment they do not occur because
we have treated the meson fields Φ classically. Higher order terms arise from
their quantum properties. For that reason the action, (2.14) is sometimes
called the semi-bosonized NJL-model.

Note that the action A[Φ] is a non-linear, even non-polynomial function
of the meson field Φ; even more, Tr log(i∂/ − Φ) is non-local. The quantum
theory defined by (2.14) is, however, equivalent to the underlying NJL model
defined by the Lagrangian (2.8). On the other hand, the generating functional
(2.14) has the advantage that it may be treated semiclassically. In particu-
lar, according to (2.10) a stationary point for Φ is to be identified with a
VEV of a quark bilinear. This paves the way toward the second goal at which
we aim, a microscopic quark model with a non-zero translationally invariant
stationary point S0 ∼ G1〈q̄q〉 to parameterize spontaneous chiral symme-
try breaking. Unfortunately the action, (2.14) is not yet suited for actual
calculations because of ultraviolet divergences in Tr log(i∂/ − Φ). A regular-
ization prescription is needed, and as the model (2.8) is not renormalizable
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(the coupling constants Gi have dimension 1/(mass)2), the model itself is only
completely defined when a regularization scheme is provided. For definiteness
we will use Schwinger’s proper time regularization [22] which introduces an
O(4)-invariant cut-off Λ after continuation to Euclidean space that is enforced
by the Wick rotation.1 Even though other regularization schemes give similar
results [25], its choice is part of the model building. In Euclidean space it
is necessary to consider the real and imaginary parts of the non-local piece
separately

AF := −i Tr log(i∂/ − Φ · Λ) Wick �
rotation

AR + AI , (2.15)

with

AR = 1
2Tr log(D/ †

ED/E) and AI = 1
2Tr log

(
(D/ †

E)−1D/E

)
. (2.16)

Here D/E =
∑4

μ=1DEμγμ is the argument of the logarithm in (2.15) analyti-
cally continued to Euclidean space (AF is real in Minkowski space). The real
part AR diverges for large momenta p whereas the imaginary part AI does not
contain ultraviolet divergencies, i.e., it is finite without regularization. There-
fore one has the option of keeping AI unregularized, or to regularize it in a
way consistent with the regularization of AR. Note that this defines two dif-
ferent models.2 For the real part of the action the proper time regularization
consists in replacing the logarithm by a parameter integral

AR → −1
2

∫ ∞

1/Λ2

ds
s

Tr exp
(
−sD/ †

ED/E

)
, (2.17)

which for Λ → ∞ reproduces the logarithm up to an irrelevant additive con-
stant, cf. (B.18). For finite Λ the contributions from small s in the integral
are left out. On the other hand, only the small s values are sensible to the
regime where the expectation value of D/ †

ED/E is large. That is, the contribu-
tions from large momenta in the functional trace are suppressed. Hence Λ is
an ultraviolet cut-off. (The notation Λ for this cut-off should not be confused
with the abbreviation for the flavor–Dirac structure in (2.11) and (2.12).)

To discuss chiral symmetry breaking it suffices to consider AR as regu-
larized in (2.17) and omit (axial)vector interactions for the time being, i.e.,
Vμ = Aμ = 0. Variation with respect to the scalar and pseudoscalar fields
yields the Dyson–Schwinger or gap equations. By symmetry, their translation-
ally invariant solutions must be Lorentz scalar and of neutral flavor. However,

1 Analogous formulations in Minkowski space are reported in [23, 24], see also
Sect. 7.7.

2 The proper reproduction of the anomaly, (2.5) seems to prohibit regularization
of AI, [26]; see, however, [27]. As will be discussed in Chap. 3, the require-
ment that soliton configurations possess integer baryon number corroborates non-
regularization of AI.
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different current quark masses prevent the solution from being proportional to
the unit matrix in flavor space. We therefore parameterize 〈Mij(x)〉 = δijmi

for i, j = 1, . . . , Nf . From (2.15) it is obvious that mi acts as a mass for the
quark of flavor i. Therefore a non-zero value is called constituent quark mass.
In the proper time regularization the explicit form of the gap equation is (The
calculation may be traced from Appendix B.)

mi = m0,i − 2G1〈q̄q〉i where 〈q̄q〉i = −m3
i

NC

4π2
Γ
(
−1,

m2
i

Λ2

)
. (2.18)

The notation already identifies the quark condensate q̄q as it is obtained
from the stationary point of the scalar field, (2.10). The interpretation in
terms of the quark loop is apparent from (B.15). This leads to the graphical
representation

imi = m0, i     + i

with the mass of the quark in the loop being mi, the dynamically generated
constituent quark mass.

We see from Fig. 2.2 that in the chiral limit (m0 = 0) the quark conden-
sate and therefore also the quark constituent mass is zero when the coupling
constant G1 stays below a critical value whose precise datum depends on
the cut-off, Λ. Above this critical value the trivial solution coexists with a

0 10 20 30 40

G1Λ2

0

200

400

600

m
/M

eV

m0 = 20MeV

m0 = 0

Fig. 2.2. The solution of the gap equation (2.18) for vanishing current mass m0 =
20 MeV (solid line) and m0 = 0 (dashed line) as function of the coupling constant
G1. In this specific computation Λ = 630 MeV has been chosen
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non-trivial one. The effective potential of a constant scalar field in the chiral
limit [20]

Veff(M) =
1

2G1
Σ2 +

NC

16π2

[
Σ4Γ

(
0,

Σ2

Λ2

)
−
(
Σ2 − Λ2

)
Λ2e−Σ2/Λ2

]
, (2.19)

where Σ =
√

tr(MM †)/Nf shows that the solution with Σ �= 0 is energetically
favored. Commonly the so-defined Σ is called the chiral radius.

Having established the existence of a non-trivial VEV 〈q̄q〉, we still have
to verify that massless pions emerge, at least for m0,i = 0. Fortunately the
examination of pion properties also allows us to assign a physical meaning
to the above introduced and so far undetermined ultraviolet cut-off Λ. For
simplicity we will omit flavor symmetry breaking in this context and call m
the solution to the flavor symmetric gap equation, (2.18) with m0,i ≡ m0.
The effects of m0,i �= m0,j �=i may be traced from the literature [28, 29]. The
Goldstone modes are expected to be orthogonal to the mode carrying the
VEV. We therefore parameterize

M = mU(x) with U(x) = exp

⎡

⎣i
N2

f −1∑

a=1

φa(x)
λa
2

⎤

⎦ , (2.20)

which also defines the chiral field, U(x). Substituting M and U = 1 +
iφa(x)λa/2 into (2.12) shows that the real fields φa(x) couple to the quarks
via γ5, as pseudoscalars should. In addition, this ensures that the modes φa
are indeed orthogonal to the scalar modes that contain the VEV. The main
task is to expand the (regularized) action up to quadratic order in φa(x). The
techniques for this calculation are provided in Appendix B. The result is most
conveniently presented in (Euclidean) momentum space

A(2) =
1
2

∫
d4q

(2π)4
∑

a

φ̃a(q)D−1(q2)φ̃a(−q) , (2.21)

where the superscript indicates the expansion up to second order and φ̃a(q) is
the Fourier transformation of φa(x). The first term in the inverse propagator

D−1(q2) = −m0m

G1
− q2f(q2) with

f2(q2) = m2 NC

4π2

∫ 1

0

dx Γ
(

0,
m2 + x(1 − x)q2

Λ2

)
(2.22)

originates from the local part of the action A, (2.14). The mass of φa(x) as
extracted from the pole condition, D−1(−m2

φ) = 0 obviously vanishes in the
chiral limit m0 = 0. Identifying the modes φa(x) as pions and comparison with
the non-linear σ model (or coupling an external axial current to A, cf. Sect. 2.5
and (B.25)) furthermore shows that the pion decay constant is
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f2
π = f2(−m2

π) . (2.23)

Imposing the empirical values fπ = 93 MeV and mπ = 138 MeV thus yields
a further relation between the cut-off Λ and the constituent quark mass m.
In practice a value for the constituent quark mass m ∼ 400 MeV is chosen
for the reason discussed later in Sect. 5.6. Equation (2.23) then provides the
corresponding value Λ ∼ 630 MeV. Subsequently the gap equation, (2.18)
yields the coupling constant G1 and finally the current quark mass m0 is
determined from D−1(−m2

π) = 0,

m2
πf

2
π =

m0m

G1
. (2.24)

Stated otherwise, the constituent quark mass is considered as the only ad-
justable model parameter.

We also confirm an important statement of Sect. 2.2: The pion would
indeed be a massless Goldstone boson if the current quark mass, m0, were
zero.

Similar computations have been applied to the vector interactions. These
investigations determine the coupling constant G2 from the empirical value of
the ρ-meson massmρ = 770 MeV. In particular the vector interactions contain
π–A1 mixing and the model yields the estimate [30]

m2
A1

= m2
ρ + 6m2 + O

(
1
Λ2

)
(2.25)

according to which the axial-vector mesons are significantly heavier than the
vector mesons. Approximate results for the (axial)vector mesons can also be
obtained in the gradient expansion that will be subject of the next section.
Furthermore exhaustive studies of flavor symmetry breaking effects in the me-
son sector have been performed. Concerning the three-flavor model it should
be noted that there is only one additional parameter, the strange quark cur-
rent mass.3 Hence the kaon decay constant, fK is a prediction. This prediction
comes out a bit on the low side: fK/fπ ≈ 1.11 vs. 1.21 empirically [5], never-
theless it is in the right ball park. For further details we refer the interested
reader to original studies [29, 30, 31] and review articles [17, 18, 19]. In any
event, the above discussion is sufficient as a set-up of the model to discuss
baryons as solitons in Chap. 3.

We want to conclude this section by discussing the transformation prop-
erties of the (pseudo)scalar field M under global chiral transformations. After
all, the model for the quark flavor dynamics was built to reflect the chiral
properties of QCD. According to the bosonization prescription we explicitly
write the flavor indices (color and spin degrees are summed),

3 We stress that the current quark masses in (2.8) are those of the model. They are
model parameters and should not be confused with those in QCD.
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Mij(x) =
N2

f −1∑

a=0

Ma(x)λ(ij)
a ∝

N2
f −1∑

a=0

λ(ij)
a

[

q̄m
λ

(mn)
a

2
qn − q̄mγ5

λ
(mn)
a

2
qn

]

.

(2.26)
In general one would expect a bilocal expression on the right hand side. How-
ever, here we are only interested in global aspects and we may ignore that
complication. For the same reason we omit constants of proportionality. From
the completeness relation for SU(N) generators (Ta = λa/2)

N2−1∑

a=1

(Ta)ij (Ta)kl =
1
2
δilδjk −

1
2N

δijδkl (2.27)

we find
Mij(x) ∝

1
2

[q̄jqi − q̄jγ5qi] = q̄RjqLi , (2.28)

with explicit reference to chirality. Under global chiral rotations

qL → L qL and qR → RqR (2.29)

with L and R constant SU(Nf) matrices, we thus induce

M(x) −→ LM(x)R† . (2.30)

This, of course, is consistent with the requirement that

q̄
(
i∂/−MPR −M †PL

)
q (2.31)

is chirally invariant. Seemingly trivial, the coexistence of (2.29) and (2.30) is a
very important result: We have just learned how to translate the chiral trans-
formation properties of QCD to the meson fields M . Hence we may identify
the internal symmetries of a model for M with those of QCD! Since most of
the QCD hadron matrix elements are to be computed from symmetry currents
we are allowed to identify the QCD matrix elements with those computed in
the model. This is indeed the only venue which permits model calculations of
QCD observables. Conversely, model calculations that are based on identify-
ing model degrees of freedom with those of QCD (rather than just identifying
currents) are less trustworthy.

2.4 Gradient Expansion

The bosonized action, (2.14), and its regularized version, (2.17), are non-local
meson theories. Many of the technical problems in the above-described cal-
culations emerge from this non-locality. It transforms into an infinite series
of local derivative terms by a Taylor expansion in the separation. The co-
efficients of these derivative terms are determined from the non-local action
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via the gradient expansion [32, 33, 34]. Assuming that the meson fields Φ
vary only slowly in space and thereby mitigating non-local effects, we may
approximate this Taylor series by truncating it to a low, say next-to-leading,
order. Here we will briefly gather the main results of this approximation for
the NJL model, in particular because it serves to construct effective meson
theories in which the construction of soliton solutions and their quantization
are significantly more perspicuous than in bosonized NJL-type models. In this
discussion of the gradient expansion we will mostly follow the treatment of
[30]. That calculation counts (axial)vector meson fields at the same order as
a single derivative which is suggested by covariant derivatives. For the sum
of the local part of the action, (2.14), and the regularized real part of the
determinant, (2.17), it yields,

AR =
∫

d4x

{
−Veff(M) +

1
4G2

tr (VμV μ +AμA
μ)

+
1

2g2
V

tr
[
3∇νM

†∇νM − FVμνF
V μν − FAμνF

Aμν
]
}

+ · · · (2.32)

where
∇νM = ∂νM + i[V ν ,M ] − iγ5{Aν ,M} (2.33)

denotes the covariant derivative of the scalar–pseudoscalar fieldM . The vector
and axial-vector parts of the field strength tensor are

FV
μν = ∂μVν − ∂νVμ + i[Vμ, Vν ] + i[Aμ, Aν ] ,

FAμν = ∂μAν − ∂νAμ + i[Aμ, Vν ] + i[Vμ, Aν ] , (2.34)

and the effective potential Veff is given in (2.19). The resulting coefficient

1
g2
V

=
NC

24π2
Γ
(

0,
m2

Λ2

)
=
f2(0)
6m2

(2.35)

exemplifies the role of the derivative expansion: In momentum space it is a
Taylor series about q2 = 0. The substitution of the parameterization, (2.20)
into (2.32), suggests fπ = f(0) in the absence of (axial)vector mesons. This
differs from the exact result, (2.23) by O(m2

π/Λ2).
Let us now look a bit closer at the vector meson fields. As a consequence

of spontaneous chiral symmetry breaking the anti-commutator in (2.33) has
a piece that is purely proportional to the axial-vector field. Thus a term of
the form Aμ∂

μ
(
M −M †) emerges in the action, (2.32). Essentially this is

π–A1 mixing and requires a redefinition of the axial-vector field to account
for the physical particle content. Then the (axial)vector meson masses are
identified as

m2
V =

g2
V

4G2
and m2

A = m2
V + 6m2 . (2.36)
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The redefinition of the axial-vector field furthermore induces an additional
quadratic derivative term for the pion field from the local part of the action.
This requires a renormalization to identify the physical pion field. In total one
reads off the pion decay constant

f2
π =

f2(0)
1 + 4G1f2(0)

. (2.37)

In terms of the two flavors with M = m(1 + iπ · τ/fπ + . . .) and Vμ =
(gV /2)ρμ · τ the commutator in (2.33) generates the vertex

Lρππ = gV ρμ · (π × ∂μπ) (2.38)

that describes the ρ-meson decay into two pions and identifies gV as the as-
sociated coupling constant, gρππ = gV. Putting (2.35)–(2.38) together relates
observable quantities,

m2
V

m2
A

=
g2
ρππf

2
π

m2
A −m2

V

. (2.39)

As a consequence, the particular choice forG2 that ensures Weinberg’s relation
between vector and axial-vector massesmA =

√
2mV [35] also gives the KSRF

relation mV =
√

2gρππfπ for the ρ-meson decay [36, 37]. The interaction

Lagrangian, (2.38) results in the ρ-meson width Γ(ρ → ππ) =
g2ρππ

6πm2
ρ
|qπ|3,

where |qπ| ≈ 360 MeV is the pion momentum in the ρ-meson rest frame. The
empirical value Γ (ρ → ππ) ≈ 150 MeV [5] gives gρππ ≈ 6 vs. 5.85 from
KSRF.

The special case that only pseudoscalar fields are considered, i.e., M = mU
as in (2.20) has been thoroughly investigated in the context of the gradient
expansion. For U ∈ SU(Nf) the leading term must have at least two deriva-
tives. From (2.32) and (2.35) it is obvious that this term is the non-linear
σ-model,

Lnlσ = −f
2
π

4
tr (αμαμ) =

f2
π

4
tr
(
∂μU∂

μU †) , (2.40)

with αμ = U †∂μU . In the two-flavor case we consider the chiral field U =
exp (iτ · π/fπ) as the non-linear representation for the pion fields and expand,

Lnlσ =
1
2

(∂μπ) · (∂μπ) +
1

6f2
π

[
(π · ∂μπ)2 − π2 (∂μπ) · (∂μπ)

]
+ · · · , (2.41)

which determines the four pion coupling constant to be proportional to 1/f2
π.

From (2.22) we infer that this effective four pion coupling constant scales as
1/NC. The expansion, (2.41), is the principal starting point of chiral perturba-
tion theory [12, 13, 14, 15, 16]. Higher order derivative terms are also known
for the pseudoscalar case. The contribution with four derivatives acting on U
is [30, 38]
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L(4) =
NC

96π2
Γ
(

1,
m2

Λ2

)
tr
{
(αμαμ)

2 − (∂μαμ)
2
}

+
NC

192π2
Γ
(

2,
m2

Λ2

)
tr
{
αμανα

μαν − 2 (αμαμ)
2
}
. (2.42)

The coefficients are finite in the limit Λ → ∞,

lim
Λ→∞

L(4) =
NC

384π2
tr
{
[αμ, αν ]

2 − 4 (∂μαμ)
2 + 2 (αμαμ)

2
}
. (2.43)

The commutator term will later play a decisive role in the framework of the
Skyrme model.

So far we have only considered the modulus of the fermion determinant in
Euclidean space, (2.15). But also the phase is non-zero, even in the absence
of vector meson fields. It is related to the anomaly as it arises from the fact
that the fermion determinant is not invariant under (local) axial transforma-
tions. In leading order of the derivative expansion this phase results in the
Wess–Zumino–Witten action [39] when rotated back to Minkowski space. The
calculation is somewhat involved and we will only sketch it here.

Starting point is the parameterization

M = S + iP = ξ†L Σ ξR, (2.44)

and the observation is that the local chiral transformation

iD̃/ = T iD/T †, with T = ξL + ξR − (ξL − ξR) γ5 (2.45)

removes the pseudoscalar fields from the Dirac operator

iD̃/ = i(∂/+ Ṽ/+ Ã/ γ5) − Σ , (2.46)

in favor of the induced (axial) vector fields Ṽμ and Ãμ. The idea now is to
compute the fermion determinant for D̃ in the proper time scheme

AF =
1
2
Tr
∫ ∞

1/Λ2

ds
s

e−sD̃D̃ (2.47)

and perform the transformation inverse to (2.45) in order to incorporate the
chiral field U(x) = ξ†L(x)ξR(x). Under an infinitesimal local chiral transfor-
mation the (axial)vector fields vary as

δ
(
Ṽμ + iγ5Ãμ

)
= [D̃μ, δα(x)] + i[D̃μ, δβ(x)]γ5 , (2.48)

where δα = Ω†δΩ and δβ = ω†δω are Cartan matrix fields in flavor space
(i.e., Ω and ω are unitary). The regularized fermion determinant transforms
as

δAF = 2i Tr
[
e−D̃D̃/Λ

2
ω†δω γ5

]
. (2.49)
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This is actually nothing but Fujikawa’s formulation of the chiral anomaly [40].
The regularization has been chosen such that only axial transformations con-
tribute. This guarantees that the vector current is conserved. We consider
(2.49) as a differential equation in functional space that must be integrated
from ω(x) = 1 to ω(x) = U(x). This is a complicated calculation that involves
various aspects of differential geometry. Details are given in [41], see also [42].
Heat kernel methods [43] may be employed to verify that the right hand side
of (2.49) is finite as Λ → ∞. In the absence of vector mesons and in leading
order of the gradient expansion the calculation yields the Wess–Zumino term

ΓWZ = − iNC

240π2

∫

M5

d5x εμνρστ tr (αμαναρασατ ) . (2.50)

The integral is over a five-dimensional manifold whose boundary is Minkowski
space, ∂M5 = M4. This fifth dimension reflects the auxiliary variable which
is introduced to formally integrate the anomaly equation (2.49) in functional
space [44]: The additional variable τ ∈ R generalizes U(x) → Uτ (x) = [U(x)]τ .
Then also the induced (axial)vector fields Ṽμ and Ãμ that are contained in D̃
parametrically depend on τ . The Wess–Zumino term, (2.50) finally arises by
integrating the anomaly equation (2.49) from τ = 0 to τ = 1.

Obviously the Wess–Zumino term is non-local. In practice its contribution
to an observable in four-dimensional space is computed with the help of Stoke’s
theorem. Due to the anti-symmetric structure this term vanishes in the two-
flavor reduction. However, in the three-flavor version it describes processes
like kaon scattering into three pions. Also, when gauged with electromagnetic
fields, it properly describes the anomalous π0 decay into two photons [39],
see Appendix C where we repeat that calculation. In the discussion of the
soliton picture (Chap. 6) for baryons we will recognize that the Wess–Zumino
term has very decisive consequences for the quantization of the soliton: The
baryon number one soliton is forced to possess half-integer spin when NC is
odd.

2.5 PCAC

In (2.23) we have identified the residuum of the propagator for the pseu-
doscalar fields φa as the (square of the) pion decay constant, fπ. We have
then normalized the argument of the chiral field in the non-linear σ model
accordingly, cf. (2.40). Actually fπ is not a pure strong interaction quantity.
Hence that identification appears a bit premature and we will now argue in
its favor. The pion decay constant is measured from the pion decay into muon
and muon–neutrino. This is an electroweak process and the corresponding
(low-energy) interaction is prescribed as a current–current Lagrangian,

Lπ→μνμ = cA(hadr)
μ A(lept),μ (2.51)
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where the coupling constant, c, is found from the Weinberg–Salam model
for the electroweak interactions. Furthermore A(hadr)

μ and A(lept)
μ are the axial

current operators for the hadrons (i.e., π) and leptons (μ, νμ), respectively. For
simplicity the sum over flavor indices is not made explicit in (2.51). It is now
obvious that we have to compute the hadronic matrix element 〈0|Aμ|π(p)〉
to investigate the decay of a pion with momentum p. We have dropped the
superscript because it is unambiguous that we are concerned with hadronic
axial current from now on. Also, eventual vector interactions are not shown
in (2.51), because the analog pion matrix element vanishes by parity.

The pion decay constant is simply defined as the pion matrix of the axial
current

〈0|Aaμ(x)|πb(q)〉 = ifπδab qμ e−iqx . (2.52)

In principle, Lorentz covariance allows fπ to depend on q2, but the pion is
on-shell so q2 = m2

π is fixed. Of course, it is possible to compute this ma-
trix element in the above-discussed model for the quark flavor dynamics. As
sketched at the end of Appendix B this indeed yields (2.23). It is more illu-
minating to consider this matrix element in the local effective meson theory.
In this model the axial current is obtained as the Noether current for the chi-
ral transformation L = R† in (2.30). The resulting infinitesimal variation of
the chiral field is proportional to the anti-commutator {U, τ}. To compute the
matrix element, (2.52) we only need the part of the axial current that is linear
in the pion field. From the non-linear σ model, (2.40) it is straightforwardly
found to be

A(nlσ)
μ (x) = i

f2
π

2
tr
[τ
2
(
αμ + UαμU

†)
]

= −fπ∂μπ(x) + O
(
π2
)
. (2.53)

This shows that the previous identification of the pion decay constant is indeed
equivalent to its actual definition, (2.52).

We may differentiate (2.52) to find

〈0|∂μAaμ(x)|πb(q)〉 = fπm
2
πδab e−iqx . (2.54)

This clearly demonstrates the role of the pion as a would-be Goldstone bo-
son: if the axial current were conserved, the pion would indeed be mass-
less. We reexpress the right hand side of (2.54) as the matrix element
fπm

2
π〈0|π̂a(x)|πb(q)〉 where π̂a(x) is the pion field operator. The resulting

generalization of (2.54) into an operator identity

∂μAμ(x) = fπm
2
ππ̂(x) (2.55)

is called the partially conserved axial vector current (PCAC) hypothesis.
PCAC relates a current whose matrix elements are measured in the weak in-
teraction to an operator in strong interactions and one is tempted to assume
that numerous predictions follow from it. However, in practice more assump-
tions must often be made to arrive at definite results. Direct relations from
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PCAC concern matrix elements at zero momentum transfer and smoothness
of the form factors must be taken for granted to extrapolate to the physically
relevant regime.

In soliton physics PCAC is sometimes interpreted in the opposite way.
While the axial current can be computed as Noether current, the identification
of the interpolating pion field operator is not as straightforward because in
these models the asymptotic pion field is a superposition of a classical field
and fluctuations about it. Then (2.55) is unprejudicedly utilized as a definition
of the pion field operator in terms of Aμ. As stated PCAC is a hypothesis,
and we will discuss an example in Chap. 9 where that definition (or at least
its generalization to the three-flavor case) appears to be inconsistent.

2.6 Relation to Instanton Effects

Often instanton effects are utilized to motivate or even to form the basis for
a derivation of the model Lagrangian, (2.8), cf. [45, 46]. This certainly is
an overemphasis of such effects. However, instanton effects can be argued to
induce dynamical chiral symmetry breaking in a way similar to the quartic
quark interaction in (2.8).

To illuminate that point let us briefly recall the nature of instantons and
their relevance to QCD. Instantons are localized field configurations that min-
imize the Euclidean Yang–Mills action

SE[A] =
1

2g2

∫
d4xE tr (FμνFμν) (2.56)

where Fμν = ∂μAν − ∂νAμ + i [Aμ, Aν ] is the field strength tensor. The gauge
field, Aμ itself is matrix valued in color space. In the standard realization
instantons are embedded in the SU(2) subgroup whose generators are pro-
portional to the Pauli matrices τ ,

A(inst)
μ =

x2

x2 + ρ2
V (x) ∂μV †(x) with V (x) =

1
ρ

(x4 + iτ · x) . (2.57)

Here x4 is the Euclidean time, x2 = x2
4 + x2 and ρ is a constant scale pa-

rameter that measures the extension (size) of the instanton. Rescaling imme-
diately shows that the action, (2.56) does not depend on ρ. Anti-instanton
configurations are simply constructed by substituting V (x) → V †(x). Vac-
uum configurations are characterized by Fμν ≡ 0 for which it suffices that
A

(vac)
μ = W (x)∂μW †(x) is pure gauge. Any of these vacuum configurations is

characterized by a topological charge n. The instanton configuration, (2.57)
mediates between vacua with charges n at x4 = −∞ and n + 1 at x4 = ∞.
Even more, the semiclassical analysis reveals that the transition amplitude
between such two vacua is exactly e−SE[A(inst)] = e−8π2/g2 [1].
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In the next step fermions are coupled to the instanton. Consider the eigen-
values, λn of the Dirac operator with the instanton background and label their
spectral density by ν(λn). Then the fermion determinant in the instanton
background can formally4 be written as (in Euclidean space)

log Det
(
i∂/+A/(inst) + im

)
=

1
2

∫ ∞

−∞
dλ ν(λ) log

(
λ2 +m2

)
. (2.58)

As in (B.15) the quark condensate 〈q̄(x)q(x)〉 is obtained from the derivative of
the left hand side with respect to the quark mass, m. Utilizing the δ-function
representation δ(x) = limε→0+ πε/(x2 + ε2) yields the famous Casher–Banks
relation [47]

〈q̄(x)q(x)〉 �
m→ 0

− πν(0) (2.59)

that relates the quark condensate in the chiral limit to the zero-mode density.
The crucial observation is that, as a result of the Atiah–Singer index theorem,
an instanton background generates a zero-mode fermion that is right-handed
in the limit m → 0. Choosing as above to embed the instanton in the SU(2)
color subgroup, the zero-mode spinor reads

qI(x) =
ρ

π
√

2x2 (x2 + ρ2)3/2
γ · xΩ . (2.60)

In the chiral representation of the Dirac matrices Ω is a 4× 2 matrix with the
upper 2 × 2 block being zero and the lower one equal to iτ2. The right index
of Ω denotes color and eventually couples to the instanton, (2.57). An anti-
instanton also generates a zero-mode fermion as in (2.60), however, the 2 × 2
blocks in Ω exchanged. Thus the zero-mode of an anti-instanton is left-handed.

To set up a model (sometimes called the instanton liquid model [48]),
assume that the vacuum is filled by an ensemble of (well-separated) instantons
and anti-instantons. Such an ensemble produces ν(0) �= 0 and thus a non-zero
quark condensate. It is beyond the scope of this monograph to repeat the
actual model calculations,5 however, the lesson to be learned is that instanton
effects in QCD indeed may cause chiral symmetry to be spontaneously broken.

When the fermion propagator S in the single instanton background

S(x, y) ≈ S0(x, y) +
qI(x)q

†
I (y)

−im
(2.61)

is approximated by the sum of the free propagator S0 and the zero-mode com-
ponent, an action functional that reproduces this fermion propagator can be
constructed. This functional contains a non-local interaction of the fermion
fields with the spinor of the zero-mode. Essentially 2Nf fermions couple to
the single instanton. In the instanton liquid model the above approximation
4 Note that we treat ultraviolet divergent objects as if they were finite.
5 See, e.g., the review articles [46, 48, 49, 50] and references therein.
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scheme is generalized to multi-instanton and anti-instanton configurations in
the first step. Subsequently their positions and orientations are integrated
over. This induces quark correlations and at the same time defines an effec-
tive model for the quark flavor dynamics. For Nf = 2 and in leading order
1/NC the flavor structure of this effective model relates to the G1 term in
(2.8) [46]. Even though instantons couple only to right-handed fermions and
anti-instantons only to left-handed ones, it is not surprising that a chiral
invariant quark interaction emerges because instanton and anti-instanton en-
sembles are independently averaged and in this process neither is favored over
the other. Since the (anti)instantons interact with 2Nf fermions, it is more or
less obvious that the spin flavor structure of (2.8) results. However, there is one
small piece of information that can be gained from the instanton model: Since
in that model the interaction is mediated by (the Fourier transformation of)
the instanton, the inverse of the average instanton size (ρ̄) provides a natural
energy cut-off for this four-fermion interaction. Early studies of phenomeno-
logical applications of the instanton liquid model yielded ρ̄ ≈ 1

3 fm [51, 52] for
this a priori free parameter. This result was reproduced within a variational
approach to stabilize the (anti)instanton ensemble [53] utilizing the classical
instanton anti-instanton interaction. This leads to an energy cut-off in the or-
der of 600 MeV, a value consistent with the NJL model estimate in Sect. 2.3.
Rather than from QCD, the instanton liquid estimate of the energy cut-off
arises from fits to empirical data. Hence the agreement with NJL model result
is not surprising.

Nevertheless there are some conceptual differences between the NJL model
action and those instanton-induced interactions. We will briefly consider them
for the case Nf = 2. We merely display the result and in doing so it is useful
to introduce non-local fermion fields [54]

ψ(x) =
∫

d4x

∫
d4k

(2π)4
eik(x−y)r(k) q(y) , (2.62)

where r(k) is extracted from the Fourier transformation of the fermion zero-
mode in the instanton background. The non-local transformation, (2.62) sup-
presses the high-frequency modes and thereby introduces the above-mentioned
cut-off. In these non-local fields the instanton-induced (effective) potential
seems actually local [46, 50],

Vinst.ind. = −g2
I

[(
ψ̄ψ
)2 +

(
ψ̄iγ5τψ

)2 −
(
ψ̄τψ

)2 −
(
ψ̄iγ5ψ

)2]
, (2.63)

where the interaction strength, g2
I , is proportional to the inverse (anti)instan-

ton density in the liquid. While Vinst.ind. is invariant under SUL(2) × SUR(2)
chiral transformations, it varies under UA(1). In the NJL model interaction,
(2.8) this is still a (classical) symmetry and all spin-flavor structures in the G1

term are attractive (as suggested by the gluon exchange approach [20]), while
in (2.63)

(
ψ̄τψ

)
and

(
ψ̄iγ5ψ

)
are repulsive. Thus the instanton liquid model
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would in particular suggest that isovector partners of the scalar isoscalar me-
son were not bound. This seems at variance with recent empirical studies that
suggest the existence of even a nonet of scalar mesons [55].

There is some evidence from lattice measurements for the existence of an
(anti)instanton ensemble in the vacuum [56, 57, 58]. An arbitrary gluon con-
figuration on the lattice is dominated by the quantum noise of high-frequency
modes. They can be eliminated in a smoothing procedure, so-called cooling,
which leaves over isolated structures that may indeed be interpreted as an
(anti)instanton ensemble. From the cooled configuration average instanton
sizes of the order of 0.3 fm are estimated in agreement (and partial support)
with the above-mentioned studies. However, it should be mentioned that the
cooling procedure is not really converging because after many arbitrary itera-
tions the instantons and anti-instantons will annihilate each other more or less
completely. For example, the results displayed in Table 1 of [57] suggest that
the number of instantons does not saturate as the number of cooling steps
increases. Stated otherwise, the extracted (anti)instanton properties depend
on the number of conducted cooling steps. As a way out, it has been proposed
to extrapolate this functional behavior to zero cooling steps. This procedure
does not seem very conclusive as Table 1 in [58] indicates.

2.7 Final Note on Chiral Quark Models

As a brief summary on this chapter about the quark flavor dynamics it seems
fair to say that there many ways to motivate an NJL-type interaction as in
(2.8), even from QCD. Most of the considerations contain approximations
whose validity is difficult to judge. Probably any bona fide argumentation
that respects chiral symmetry and stops one step before completely omitting
any interaction will result in such a model. Above we have argued that the
current–current approximation and the instanton liquid model do so, the field
strength (re)formulation [59] of QCD is yet another example.

The NJL-type models focus on chiral symmetry and a dynamical descrip-
tion of its spontaneous breaking. However, these models lack the important
feature of color confinement. This should not be forgotten even though it is
not a serious drawback for most applications because they are not affected by
unphysical quark anti-quark thresholds. This is particularly the case for static
solitons that we will exhaustively discuss in the following chapter.
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3

Self-consistent Soliton

This chapter serves to describe how solitons emerge as a self-consistent
solution to the (static) field equations in the (regularized) NJL model that
was introduced in Chap. 2. Here we will mainly sketch the idea, briefly dis-
cuss established soliton solutions and address some unresolved questions. For
more details and references on the self-consistent soliton solutions in NJL-type
models, we refer the interested reader to the review articles [1, 2].

3.1 Static Energy Functional

As formulated in the introduction, we apprehend solitons as classical solutions
of the equations of motion in a non-linear field theory [3]. The energy den-
sities of soliton field configurations are localized in space and their total en-
ergy is finite (discussed in Chap. 1). In particular, this implies that soliton
configurations are at least equivalent if not identical to the vacuum config-
uration at spatial infinity. We have already encountered such objects during
the discussion of instanton effects in Sect. 2.6. Instanton solutions emerged in
Euclidean space where the time and space coordinates are not really distinct
so that the instanton may actually be considered as a special type of static
field configuration.1 Being static is actually a major feature of many soliton
configurations. This is a mere matter of feasibility: time-dependent solutions
with localized energy densities are simply not known for most field theories.
For static configurations, it is also quite easy to derive the energy functional
because it is proportional to the action of the considered field configuration.
In the first step, we will therefore formally construct the energy functional
from the unregularized action, (2.11), and then apply the proper time reg-
ularization scheme, (2.17), to the ultraviolet divergent vacuum contribution.

1 The four-dimensional Euclidean space may be embedded in a five-dimensional
Minkowski space with an additional time coordinate and the four Euclidean
dimensions as spatial coordinates.

H. Weigel: Self-consistent Soliton, Lect. Notes Phys. 743, 27–42 (2008)
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28 3 Self-consistent Soliton

We refer to [2, 4] for a corresponding discussion in the Pauli–Villars scheme,
see also Sect. 7.7. Temporal components of vector fields complicate the Wick
rotation, (2.15). For the time being, we therefore assume V0 = iV4 = 0 as well
as A0 = iA4 = 0 and relegate the corresponding discussion to Sect. 3.3.

After bosonization, (2.14), we have to compute Tr log(i∂/ − Φ · Λ) =
log Det(i∂/−Φ·Λ) in the presence of non-perturbative static meson field config-
urations Φ(x) = Φ(x). This determinant is given in terms of the eigenvalues
of i∂/− Φ · Λ. Since det(iβ) = 1, we may equally well consider

β (i∂/− Φ(x) · Λ) = i∂t − h(Φ), (3.1)

which introduces the single-particle Hamilton operator h(Φ) that (parametri-
cally) depends on the shape of the background field, Φ. For static fields, we
have [i∂t, h(Φ)] = 0 and the eigenvalues of (3.1) separate into the eigenvalues
of i∂t and h. The fermion fields assume anti–periodic boundary conditions
on the (arbitrarily large) time interval T . Therefore, the eigenvalues of i∂t are
given by the Matsubara frequencies Ωn = (2n+1)π/T with n = 0,±1,±2, . . ..
In the next step, the single-particle Hamiltian defines the eigenvalue problem2

h(Φ)Ψν = ενΨν . (3.2)

We achieve discretization of the eigenvalues εν by diagonalizing h in an arbi-
trarily large volume. It also implies that the eigenstates of h are normalized
to unity, 〈μ|ν〉 = δμν . From these eigenvalues, we compute the unregularized
fermion determinant as the product [5]

Det (i∂/− Φ(r) · Λ) =
∏

ν,n

(
2n+ 1
T

π − εν

)

= C(T )
∏

ν,n≥0

(

1 −
[

ενT

(2n+ 1)π

]2)

. (3.3)

The whole information about the static meson fields is contained in the eigen-
values εν . Therefore, the constant

C(T ) =
∏

n≥0

(

−
[
2n+ 1
T

π

]2
)

(3.4)

does not depend on the dynamical properties of the system and may hence
be absorbed into the normalization of the determinant. Using standard
techniques from statistical mechanics and infinite product representations
of trigonometrical functions,3 the functional determinant, (3.3), may be
rewritten as [1, 7]
2 These eigenvalues and eigenfunctions parametrically depend on the background

field: εν = εν [Φ] and Ψν = Ψν [Φ].
3 In particular, cos(x) =

∏
n≥0

(
1 − [2x/(2n+ 1)π]2

)
[6].
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Det (i∂/− Φ(r) · Λ) = C̃(T ) exp [iA0]
∑

{ην}
exp

[
iA{ην}

V

]
, (3.5)

which provides a natural decomposition into vacuum

A0 = T
NC

2

∑

ν

|εν | (3.6)

and valence (anti-)quark

A{ην}
V = −TNC

∑

ν

ην |εν | =: −TE{ην}
V (3.7)

contributions. In (3.5), the sum goes over all possible sets of fermion occupa-
tion numbers ην = 0, 1. Since there is no explicit color interaction, the only
effect of color is the multiplicative factor NC which we have made explicit
in (3.6) and (3.7). The above assignment of A0 as the vacuum contribution
is based on the definition of the latter as the sole remnant in limit of large
Euclidean times when T → ∞. Equation (3.7) should be considered as a defi-
nition of the valence energy,E{ην}

V , for a prescribed set of occupation numbers.
These occupation numbers do not have an immanent physical meaning. How-
ever, it is obvious that different sets {ην} in general correspond to different
baryon numbers, B, because each occupation of a fermion level adds 1/NC

to B. Stated otherwise, the sum in (3.5) involves configurations with differ-
ent baryon numbers, and we have to identify contributions that stem from a
prescribed value B. To this end, we consider the baryon number current

jμ(x) =
1
NC

〈q̄(x)γμq(x)〉 (3.8)

=
1
NC

iδ
δvμ(x)

log Det (i∂/− Φ(r) · Λ − vμγ
μ)
∣
∣
∣
vμ(x)=0

,

as a single quark carries baryon number 1/NC. We may regard vμ as a per-
turbation in the eigenvalue problem

δεν
δvμ(x)

∣
∣
∣
vμ(x)=0

= ψ†
ν(x)βγ

μψν(x) =
(
ψ†
νψν(x), ψν(x)α ψν(x)

)μ
, (3.9)

where ψν(x) and εν are the eigenfunctions and eigenvalues of h. This allows us
to apply the functional derivative onto (3.5). Taking furthermore into account
that the eigenfunctions are normalized to unity, we immediately find

B({ην}) =
∫

d3r j0(x) =
∑

ν

(
ην −

1
2

)
sign(εν) (3.10)

for the baryon number associated with a given set of occupation numbers. This
relation between baryon number and occupation numbers is obviously not
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bijective because a given baryon number may result from various sets {ην}.
Once the energy eigenvalues εν are known, there is a well-defined set {ην}
with the minimal E{ην}

V . This particular set serves to construct the soliton in
a sector with fixed baryon number.

So far, the derivation of the energy functional has been formal as the vac-
uum contribution, (3.6), diverges. Also, the sum in (3.10) is only conditionally
convergent. To actually compute A0, we have to apply the limit T → ∞ and
employ the proper time regularization which is an inseparable part of the
model definition. Fortunately, the former is straightforward as the Matsubara
frequencies become continuous and we may replace

∑

n

f (Ωn) −→ T

∫
dz
2π

f(z) . (3.11)

The functional trace in (2.17) for static meson fields then becomes

AR = −TE0 = −T NC

2

∑

ν

∫ ∞

−∞

dz
2π

∫ ∞

1/Λ2

ds
s

exp
{
−s
(
z2 + (εν)2

)}
, (3.12)

which at the same time defines the regularized vacuum energy, E0. The
z-integral is Gaußian, and the proper time integral can be written as an in-
complete Γ–function with half-integer index to be related to a complementary
error function, cf. Appendix B. Then the vacuum energy becomes

E0 =
NC

4
√
π

∑

ν

|εν |Γ
(
−1

2
,
( εν

Λ

)2
)

= −NC

2

∑

ν

{
|εν |erfc

(∣∣∣
εν
Λ

∣
∣∣
)
− Λ√

π
exp

(
−
(εν

Λ

)2
)}

. (3.13)

Since the eigenvalues εν depend on the shape of the background fields Φ, the
total energy (with {ην} determined as explained above)

Etot[Φ] = NC

∑

ν

ην |εν | + E0[Φ] − E0[Φ0] + Em[Φ] (3.14)

is a functional of Φ, i.e., a meson theory. The contribution from the local part
on the action is denoted by Em and is straightforwardly obtained by substi-
tuting the background field into the integral on the right hand side of (2.14).
The vacuum energy of the trivial configuration Φ0 = diag

(
m1,m2, . . . ,mNf

)

is subtracted in (3.14) to set the scale. Eventually, a constant is added such
that Em[Φ0] = 0.

As already indicated, the vacuum contribution to the baryon number
in (3.10)

B0 = −1
2

∑

ν

sign(εν) (3.15)
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is only conditionally convergent. The positive and negative energy spectra
must be summed symmetrically to obtain a meaningful result.4 Any kind of
(proper time) regularization would multiply each summand in (3.15) with
a factor less than unity and thus render an integer baryon number highly
unlikely. The analysis in Euclidean space reveals that B0 originates from the
imaginary part of the bosonized action. These are strong arguments in favor
of not to regularize the imaginary part of the Euclidean action. The spectrum
of h(Φ0) is symmetric and thus B0[Φ0] = 0. The main result from (3.15) then
is that for a background field whose interaction with the quarks induces a
spectrum in which an energy eigenvalue has changed its sign from plus to
minus, the vacuum carries non-zero baryon number!

To preserve the baryon number when an energy eigenvalue changes sign,
the occupation numbers ην must be modified along that transition. It is
straightforward to verify that the total energy, (3.14), is continuous and
smooth when the baryon number is held fixed: Consider the case with baryon
number B = 1 and denote by εV the energy eigenvalue of the most strongly
bound quark. To ensure B = 1, we have to set ηV = (1 + sign(εV))/2 as the
occupation number of the most strongly bound quark; all other occupation
numbers must be zero. Then we find that

E
(B=1)
tot [Φ] =

NC

2
[1 + sign(εV)]εV + E0[Φ] − E0[Φ0] + Em[Φ] (3.16)

does not develop a cusp when εV → 0.
Obviously the soliton energy is O (NC) because the fermion action, (2.14),

contains the sum over color degrees of freedom.
The goal is to minimize the functional, (3.16). Early attempts employed

variational ansätze as, e.g., Θ(r) = π (2arctan(r/R0) − 1) for the chiral angle
that appears in the hedgehog ansatz for the chiral field, cf. (3.22). Then the
functional turns into a function of the variational parameters (here R0) and
a local minimum is searched for [8]. However, such a search is not exhaustive
and difficult to use when more fields are considered, as some inspiration is
required to invent suitable variational parameters. Fortunately, we can do
better and compute the self-consistent solution. That will be the subject of
the next section.

3.2 Method

We now describe the construction of the minimal energy configuration with
prescribed baryon number. This calculation proceeds in a number of steps.
First, profile functions for the fields Φ are guessed. These functions serve to
compute the eigenvalues, εμ, and associated eigenfunctions, ψμ, of the Dirac–
Hamiltonian, h(Φ), in the second step. As remarked above, h is diagonalized in
4 This corresponds to taking the principle value prescription when integrating over

the Matsubara frequencies in the limit T → ∞, cf. (3.11).
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a large but finite volume to discretize these states. In particular, the extension
of this volume is much larger than any intrinsic scale carried by Φ. Eventually,
the volume extension is changed to verify that the results do not depend on
it. The implicit equations of motion

0 =
δEtot[Φ]
δΦ(x)

=
∑

μ

∂Etot[Φ]
∂εμ

δεμ[Φ]
δΦ(x)

+
δEm[Φ]
δΦ(x)

(3.17)

=
∑

μ

(
ημsign(εμ) +

∂E0[Φ]
∂εμ

)
ψ†
μ(x)

[
∂h

∂Φ
(x)
]
ψμ(x) +

δEm[Φ]
δΦ(x)

relate Φ to quark bilinears ψ†
μ(x) (. . .)ψμ(x), that functionally depend on Φ.

In the third step, these relations are utilized in a steepest descent approach
to construct new profile functions with a lower total energy. The new profile
functions are compared to the previous ones, as are the corresponding energies.
If convergence is achieved (the changes from one step to the next do not
exceed a prescribed limit), the configuration is adopted as the soliton solution.
Otherwise, the new profiles are substituted for those that entered h before and
the process is restarted. This Hartree iteration method is depicted in Fig. 3.1.

It is very complicated and essentially impossible to obtain the solutions to
the equations of motion (3.17) directly. One therefore assumes certain ansätze
for the background field. In the baryon number one sector these ansätze are
of the so-called hedgehog type [9] which contracts internal (flavor) and spatial
indices such that the meson fields are invariant under a combined transforma-
tion. The so-constructed spin-flavor operators are then multiplied by radial
functions which are ultimately utilized to minimize the total energy. These
ansätze are similar to the instanton configuration, (2.57), that contains the
contraction of color and spatial indices and (four-dimensional) radial func-
tions. As for the instantons, the hedgehog is embedded in the SU(2) subgroup
of the symmetry group associated with the internal indices, this time SU(Nf).
The generator of combined spatial and isospin transformations, the so-called
grand spin

G = J +
τ

2
= L + S +

τ

2
, (3.18)

Φ h

ψµ

µ Etot[Φ]

Eq.(3.17)
new Φ

convergence ?
yes soliton

solution

no

Fig. 3.1. Self-consistent procedure to construct the soliton
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commutes with h(Φ). In (3.18), J , L and S are total spin, orbital angular
momentum and (internal) spin operators, respectively, while τ are the isospin
Pauli matrices (eventually embedded in SU(Nf)). Eigenstates of G are also
eigenstates of h(Φ). The eigenfunctions of G are generalized spherical har-
monic functions
[
YMGJL(x̂)

]
si

=
∑

m,s3,i3,J3

CGM
JJ3,

1
2 i3
CJJ3

Lm,
1
2 s3

YLm(x̂)χ(S)
s (s3)χ

(I)
i (i3) . (3.19)

In the above equation, the C...... are SU(2) Clebsch–Gordan coefficients, the
YLm(x̂) spherical harmonic functions, while the χ(S) and χ(I) are each two
component spinors in spin and isospin spaces, respectively. A four-component
Dirac spinor with α = 1, . . . , 4 in the standard representation (in which γ0 is
diagonal) is constructed by putting two Weyl spinors [Y .....(x̂)]si with α = s
and [Y .....(x̂)]s′i and α = s′+2 together. Furthermore, the angular dependences
of the fields in Φ are chosen to be compatible with the parity of the corre-
sponding Dirac structures in (2.12). Thus, the eigenstates of h(Φ) are also
parity eigenstates with eigenvalues Π = ±1. In full glory, that part of the
eigenspinors that carry non-zero isospin reads5

Ψ (G,+)
μ =

⎛

⎝
ig(G,+;1)
μ (r)Y

GG+
1
2G

f
(G,+;1)
μ (r)Y

G+1G+
1
2G

⎞

⎠+

(
ig(G,+;2)
μ (r)YGG− 1

2G

−f (G,+;2)
μ (r)YG−1G− 1

2G

)

(3.20)

Ψ (G,−)
μ =

(
ig(G,−;1)
μ (r)YG+1G+ 1

2G

−f (G,−;1)
μ (r)YGG+ 1

2G

)

+

(
ig(G,−;2)
μ (r)YG−1G− 1

2G

f
(G,−;2)
μ (r)YGG− 1

2G

)

, (3.21)

where r = |x|. The angular dependence and the four Dirac and two isospin in-
dices have not been explicitly written as their appearance is discussed above.
The second superscript on the spinors Ψμ labels the intrinsic parity Πintr that
enters the parity eigenvalue via Π = (−1)G × Πintr. The relative phases are
chosen such that the equations of motion are compatible with purely real ra-
dial functions g(..)

μ and f
(..)
μ . The above-mentioned discretization description

transforms into boundary conditions for the radial functions. In accordance
with the spherical structure of the box, the finite volume should be a sphere
of radius D. As possible boundary condition is to require g(..)

μ (D) = 0, i.e.,
the upper components of all spinors vanish at the boundary of the finite
volume. One of the first studies [11] imposed the boundary condition that
the radial function that multiplies the generalized spherical harmonic func-
tion with identical grand spin and orbital angular momentum vanished at
the boundary. Properties of various boundary conditions are discussed in the
literature [12, 13]. The pertinent boundary condition usually depends on the
problem under consideration. They all have in common that there is no flux
〈ψ|x̂ · γ|ψ〉 through the sphere at r = D.
5 The part with zero isospin (flavor indices 3, . . . , Nf) does not couple with the

hedgehog. Hence, those spinors are simply free ones in spherical geometry [10].
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Although obvious, it is worth mentioning that the energy eigenvalues
obtained by diagonalizing the Dirac–Hamiltonian in a definite channel, GΠ,
acquire the degeneracy factor 2G+ 1 when summed over as, e.g., in (3.16).

The self-consistency procedure, Fig. 3.1, finally boils down to relating the
radial functions g(..)

μ and f (..)
μ to the profile functions that parameterize Φ. We

will be more explicit on that when discussing specific solutions in Sect. 3.3.
Before doing so, we will briefly discuss major features of the spectrum of
h(Φ). To simplify that discussion, we assume that the profile functions in Φ
are characterized by a single length scale, a, and we study the spectrum6 as a
function thereof. Of course, we always have a� D. We also assume that the
amplitudes of the profile functions do not exceed certain limits (this is rele-
vant for the scalar–isoscalar component of Φ, see Sect. 3.3.4). We expect the
most strongly bound quark to have zero grand spin, G = 0. Charge and parity
conjugation properties of Φ can be arranged such that the corresponding eigen-
state has positive parity. Hence, the spectrum of Ψ(0,+)

μ is of special interest.
The scale inherited from the fermion determinant is the VEV (or constituent
quark mass) m. Thus, small, moderate and large background configurations
correspond to the cases am� 1, am ∼ 1 and am� 1, respectively. For these
three cases, the spectrum is outlined in Fig. 3.2. For small extensions, the
interaction between the background and the quarks is weak. This causes the
lowest lying quark with positive energy to be only loosely bound. For exten-
sions of the order of the Compton wave length of the quarks, the interaction
is strong enough to yield a sizable binding energy of that quark. It is expected
that this energy gain is sufficient to result in an energetically bound object

m
ε ε ε

εV
εV

εV

−

0

−m−

am 1

m−

0

−m−

am∼1

m−

0

−m−

am 1

Fig. 3.2. Schematic spectrum in theGΠ = 0+ channel for NC = 3. In the Dirac–hole
picture, the levels shown with filled circles are to be occupied, the open ones not.
Continuum states with |ε| ≥ m are only schematically indicated and εV is defined
before (3.16). Three cases for the extension of the background field are shown small
(left), moderate (center) and large (right)

6 The spectrum is computed by expanding the radial functions in terms of solutions
to the free Dirac–Hamiltonian in spherical geometry, g

(G,+;1)
μ =

∑
n a

(μ)
n jG(knr),

etc., jG is a spherical Bessel function and the discretized momenta kn determined
from the boundary condition at r = D. The Dirac equation hψμ = εμψμ is thus
transformed into an algebraic eigenvalue problem for the vectors a(μ). Technical
details of this calculation are explained in [14].



3.3 Soliton Solutions in NJL-Type Models 35

that carries baryon number. Note that the scenarios with small and moderate
extensions still result in a vanishing vacuum baryon number when (3.15) is
summed symmetrically over positive and negative energy eigenvalues. To as-
sign unit baryon number to such configurations, the bound state occupation
numbers must be taken to be one. This is no longer the case for wide back-
ground fields. Then the energy eigenvalue of the most strongly bound quark
turns negative and B0 = 1. For very large extensions, this state will eventually
join the negative continuum. Whenever B0 = 1, all occupation numbers must
be set to zero. Stated otherwise, for am � 1, the background polarizes the
vacuum so strongly that it acquires a baryonic charge.

It is worth to discuss the relation to the suggestive Dirac–hole picture in
which the total energy is obtained by summing only over occupied states.
According to that picture, the fermion energy of a baryon number one con-
figuration would formally be E(B=1)

fer. = NC

∑
εμ≤μ εμ minus the energy as-

signed to the trivial configuration Φ0. Again formally, this expression can
be argued in favor from (3.6) and (3.7) together with the vanishing trace
of the Dirac–Hamiltonian, tr(h) =

∑
μ εμ = 0. However, once regular-

ization is included, and it is a must here, these trace arguments are no
longer valid. In that case, the unique and correct prescription is to sum
over all positive and negative energy states as in (3.16). In a quantum
field theory approach, that involves regularization (or even renormalization),
the Dirac theory must be formulated such that charge conjugation invari-
ance is ensured. This ultimately relates functional traces to sums over all
states [15].

3.3 Soliton Solutions in NJL-Type Models

In this section, we will finally discuss actual soliton configurations that mini-
mize the regularized energy functional in the baryon number one sector.

3.3.1 Pseudoscalar Fields

Pions are central to chiral symmetry, whence a self-evident approach for the
construction of a static configuration that solves the stationary equations
(3.17) is to only consider the pseudoscalar Goldstone bosons in the two-flavor
reduction. Scalar as well as (axial) vector mesons assume their vacuum values.
The hedgehog ansatz [9] for static chiral field in (2.20)

U(x) = exp (iτ · x̂Θ(r)) with r = |x| (3.22)

defines the chiral angle Θ(r). It is to be treated self-consistently according to
the scheme shown in Fig. 3.1. The corresponding Dirac–Hamiltonian is

h = α · p +mβ
[
cosΘ(r) + iγ5τ · x̂ sinΘ(r)

]
. (3.23)
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For the above ansatz, the stationary equation

m2
πf

2
π sinΘ(r) = NCm tr

{[
sinΘ(r) − iγ5τ · x̂ cosΘ(r)

]
ρ (x,x)

}
(3.24)

introduces the regularized density

ρ (x,y) = θ(εV)ΨV(x)Ψ̄V(y) − 1
2

∑

ν

sign (εν) erfc
(
|εν |
Λ

)
Ψν(x)Ψ̄ν(y)

(3.25)
as a matrix in Dirac and isospin spaces. It defines the steepest descent in
the Hartree iteration. As indicated above, ρ (x,y) is continuous as εV → 0.
The right- and left-hand sides in (3.24) originate from the regularized fermion
determinant. The chiral symmetry breaking piece is

Em = −m0m

4G1

∫
d3r tr

[
U + U † − 2

]
= 4πm2

πf
2
π

∫ ∞

0

drr2 [1 − cos(Θ(r))] ,

(3.26)
with mπ substituted for m/G1 according to (2.24). The self-consistency fea-
ture is expressed through the fact that the spinors Ψν are eigenstates of the
Hamiltonian, (3.23), thus inducing a parametrical dependence of ρ (x,y) on
Θ(r). The subscript “V” denotes the valence level, the most strongly bound
quark in the GΠ = 0+ channel. Of course, the sum over ν turns into one over
the grand spin and parity labels with appropriate degeneracy factors attached
as the density matrix is computed using the basis states of (3.20) and (3.21).
The sums over the grand spin projection, M in (3.19), and over the discrete
indices take care that the right-hand side of (3.24) does not depend on angular
variables.

Self-consistent solutions to this system were obtained already some time
ago for NC = 3 [16, 17, 18]. The typical solution has Θ(0) − Θ(∞) = nπ,
with n an integer, and one is free to choose Θ(∞) = 0. Note that these
boundary values result from the equation of motion; they are not subject to
any topology argument or the requirement of finite energy. For various values
of the constituent quark mass, m, the solutions are shown in Fig. 3.3. As
explained in Chap. 2, this mass is commonly taken as the only adjustable
parameter in the model once pion decay constant, fπ = 93 MeV, and pion
mass, mπ = 135 MeV, are fixed. Self-consistent solutions were numerically
obtained for m ≥ 325 MeV [16]. The profile function obviously exhibits only a
very mild dependence onm. The soliton energyEtot, i.e., the energy functional
corresponding to the self–consistent chiral angle, similarly varies only scarcely
with m as can be seen from Table 3.1. The soliton mass is larger than the
three quark thresholds as long as m�420MeV. Due to the lack of confinement
in this model (cf. Chap. 2), the soliton is not stable in this case and may decay
into three free quarks.

The total energy, Etot, or soliton mass, cannot directly be compared to
baryon masses (i) because the soliton first has to be projected onto baryon
quantum numbers, this will be thoroughly discussed in Chaps. 5 and 6, and
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Fig. 3.3. Self-consistent chiral angle Θ as a function of the radial coordinate for
different model parameters

(ii) because of the sizeable quantum corrections to the energy due to meson
fluctuations7 to be addressed in Sect. 8.6. In Table 3.1, the various contri-
butions to the soliton mass are also displayed. For small constituent quark
masses, the explicit occupation of the valence quark orbit (ηV = 1) provides
the dominant contribution to the energy. As m increases the situation is re-
versed. For m > 750MeV, EV = 3εV turns negative. This implies ηV = 0 and
the valence quark becomes part of the polarized vacuum which then carries
the baryon number. The data confirm that Etot is smooth.

Table 3.1. The soliton energy Etot and its various parts defined (3.16) as functions
of the constituent quark mass m. According to (3.16), the entry labeled E0 contains
the vacuum energy with the subtraction of E0[Φ0]. All data are in MeV

m 350 400 500 600 700 800

Etot 1236 1239 1221 1193 1161 1130
EV 745 633 460 293 121 −55
E0 459 571 728 869 1012 1103
Em 31 34 33 31 28 26

7 In general, meson loops about the soliton are not renormalizable in these effective
models. Hence their quantum effects can only be estimated.
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3.3.2 Vector and Axial-Vector Fields

As a first extension, the ρ vector meson field was incorporated [19] according
to the Wu–Yang ansatz

Vμ = ρμ · τ

2
with ρ0a = 0 and ρia = εikax̂kG(r) . (3.27)

This introduces a second radial function, G(r). It can easily be verified that
this field configuration commutes with the grand spin generator, (3.18). Ex-
cept for the pseudoscalar field, for which the hedgehog shape, (3.22), was
adopted, all other fields were set to their vacuum expectation values. In that
calculation, the lower limit above which solitons exist has been determined
to be m ≥ 270 MeV. The incorporation of the ρ-meson does not alter the
relation among the model parameters in the pseudoscalar sector. This is no
longer the case when also the a1-meson is included as required by chiral in-
variance. Mainly π − a1 mixing changes the relation between the pion decay
constant, fπ, and the cut-off, Λ. The latter is significantly increased for a pre-
scribed value of m, cf. Sect. 2.4. The general ansatz for the a1 meson which is
consistent with the grand spin zero assumption and reflects the pseudovector
character involves two radial functions, H(r) and F (r),

Aμ = a1,μ · τ

2
with a1,0a = 0 and a1,ia = δiaH(r) + r̂ir̂aF (r). (3.28)

Self-consistent solutions were found for m ≥ 300 MeV [20, 21]. The full system
now involves four functions that are to be treated according to the self–
consistent scheme depicted in Fig. 3.3. This numerical program is quite in-
volved, and the resulting radial functions are, e.g., presented in figures 1–3
of [22]. An essential feature of these radial functions is that H(0) �= 0, while
the two other profile functions for the (axial) vector meson fields do vanish at
the center of the soliton. Thus, in contrast to the vector field, the axial-vector
fields do strongly affect the quark modes in the grand spin zero channel. This
is in particular the case for the valence quark level whose energy eigenvalue
turns negative already for moderate values of the constituent quark mass, m.
This is shown in Table 3.2. Hence, the chiral invariant inclusion of vector
degrees of freedom in the baryon number one sector of NJL-type models causes
the vacuum to be so strongly polarized that it carries the baryon charge. The

Table 3.2. The soliton energy Etot as well as its vacuum and mesonic contributions
E0 and Em for different values of the constituent quark mass m. The energy of the
most strongly bound quark mode is also shown.

m (MeV) 300 350 400
Etot (MeV) 1104 1010 938
E0 (MeV) 736 615 544
Em (MeV) 368 395 394
εV/m −0.04 −0.38 −0.54
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same conclusion was drawn from a calculation that eliminated the axial–vector
field in a chirally consistent manner by a local chiral transformation on Φ [13].

3.3.3 Remark on the ω Field

The ansatz for the isoscalar ω field that is compatible with the grand spin sym-
metry permits only a radial function in the temporal component, V0 = ω(r)1.
Hence, this component is subject to variation under the Wick rotation, (2.15).
A constant phase factor ζ = eiϕ that continuously transforms from real and
imaginary axes can be attached to verify that the solutions to the Dirac equa-
tion with the ω field included are indeed analytic functions [23]. This is a well-
known property of ordinary differential equations. The problem emerges with
regularization that treats real and imaginary parts of the Euclidean action
differently and thus spoils the analytic properties. In addition, the Hamilton
operators that enter D/E and D/ †

E, h and h†, respectively, cannot be simulta-
neously diagonalized. Thus, it appears impossible to construct a meaningful
regularized action which, e.g., leads to a regularized energy functional but un-
regularized vacuum baryon number. This is kind of a pity since in particular
the ω meson degree of freedom is affected and from hadron phenomenology we
expect this field to play a decisive role. So far, sensible calculations that include
the ω field have mainly been carried out in a perturbation expansion [23], i.e.,
the action is expanded as a power series in ω with non-local contributions.8.
This power series may then straightforwardly be analytically continued from
Euclidean to Minkowski space. The numerical results suggest that it suffices
to expand up to quadratic order. It should be noted that only the temporal
component of the ω field undergoes this expansion, all other (axial) vector
meson fields are retained at all orders. In [24], this approach was criticized on
the basis that a divergent piece of the action would emerge that couples spa-
tial and temporal components of vector mesons. However, this contribution
vanishes identically by the flavor trace because spatial components of the ω
field are absent in the generalized hedgehog ansatz. In this semi-perturbative
treatment of the ω field, its repulsive character is well reproduced [23]. Most
importantly, these numerical studies do not alter the above conclusion that
for the self-consistent soliton the baryon number is carried by the vacuum,
i.e., a fermion level has moved from the positive to the negative spectrum due
to the interaction with the background meson fields. This does not come as
a surprise. The repulsive character causes the extension of the chiral angle
to increase, which in turn decreases the energy of the most strongly bound
quark, cf. Fig. 3.2.

This second-order treatment of the ω field can be generalized to all or-
ders [25]. However, for actual computations it becomes tremendously bulky:
The analog of the z-integral in (3.12) must be performed numerically because

8 See [21, 22] for earlier attempts to construct a regularized energy functional in
the presence of the ω field.
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the generalized Dirac–Hamiltonian parametrically depends on that frequency.
In particular, a self-consistent construction of a soliton seems currently infea-
sible in such a formulation.

3.3.4 Comments on Scalar Fields

In the above considerations, the (pseudo)scalar fields have been constrained to
the so-called chiral circle,MM † = m2, for good reason. It was soon recognized
that relaxing this condition causes the soliton to collapse [26], at least as long
as (axial) vector fields are omitted. To relax the above condition, the ansatz,
(3.22), is extended to

M = m {[1 + f(r) cos Θ(r)] + if(r)τ · x̂ sin Θ(r)} (3.29)

such that the chiral radius Σ, defined after (2.19), depends on the radial co-
ordinate. Starting from a smooth configuration for the profile function f(r),
the iterative procedure of Fig. 3.1 produces a sharp peak at r = 0 of arbi-
trary height. Simultaneously, Em and E0 tend to zero. The Dirac spectrum
has the interesting feature that the valence level gets transferred from the
lower boundary of the positive Dirac spectrum to the upper boundary of neg-
ative Dirac spectrum. All other levels in the Gπ = 0+ channel follow as a
consequence of “avoided crossings.” Higher partial waves do not get affected.
Obviously, the baryon number is then carried by the vacuum, and hence the
soliton energy is solely given by the vacuum part E0 and thus vanishes; but
nevertheless the baryon number is one. To some extent, this instability is
an artifact of regularizing only the real part of the action. For the above-
described configuration, the asymmetry of the Dirac spectrum is transferred
to ever larger energies. So it is reflected in the baryon number but not in the
energy in which the large energy modes are suppressed by regularization.

Early numerical calculations [17, 27] that allowed a radial-dependent scalar
field and claimed to have obtained stable solitons already indicated an inflated
chiral radius which happens to be at variance with what we know about
bag formation in linear sigma models [28]. Those early calculations actually
suffered from artifacts in the numerical treatment that were associated with
a restricted basis to sum over levels. The self-consistent process essentially
requires the expansion of the profile functions in Fourier series, cf. footnote 6,
and in a limited basis, arbitrarily sharp peaks cannot be reproduced.

Of course, it should easily be possible to extend the model such that this
instability is avoided. First, we recognize that as a consequence of (proper-
time) regularization, the effective potential, (2.19), does not generate a large
positive definite Σ4 term that eventually balances negative contributions from
derivative terms in the fermion determinant. It does not seem sufficient to
change the regularization scheme for AR [29], rather a fourth-order term must
be put in by hand [30, 31]. This can, e.g., be motivated from models that mock
up the trace anomaly of QCD in effective meson theories [32]. Once such a
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local term is added, the soliton is again stabile and its properties are similar
to the one described in Sect. 3.3.1.

Vector mesons [22] or requiring the regularized baryon number [33] are
alternative means to stabilize the chiral radius.

As a brief summary of this chapter, we put on record that NJL-type models
for the quark flavor dynamics contain soliton solutions albeit their construc-
tion comes with quite some complications which so far are not completely
resolved. The most appealing feature is that the chirally consistent incorpora-
tion of vector mesons polarizes the vacuum so strongly that it actually carries
baryon number. In such a scenario, there are no explicit valence quarks, rather
the baryon number must be considered as a property of the meson fields, in
particular the chiral field U(x) that triggers the other profile functions.
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4

The Skyrme Model

In the previous chapters we have considered effective models for the quark
flavor dynamics. We have seen that bosonization techniques transform these
models into effective meson theories: They can be formulated as functionals
of the chiral field U (and other meson fields). We have also seen that self-
consistent solitons emerge in such models. However, that results from quite
a complicated calculation as integrating out the quarks leads to non-local
functionals of the meson fields, though some simplification is achieved by
derivative expansions. To complicate matters, we note that so far we have
not attacked the problem of quantizing such a soliton to describe states with
baryon quantum numbers. Hence the immediate question arises of whether or
not it is possible to directly employ a local meson theory and discuss its chiral
solitons. In such an approach the baryon number has to be assigned to the
meson fields. As we have just learned from the NJL model for quark flavor
dynamics this is actually likely. On the other hand it would be particularly
intriguing if it were possible to derive or at least motivate that baryons emerge
as solitons in effective meson theory directly from QCD. In this chapter we
will exactly survey this scenario.

The discussion of chiral meson models and their soliton solutions will be
the main subject of this chapter. For the remainder of this monograph we
will concentrate on such models and only revert to quark models in case
substantially new information is gained as, e.g., in the context of nucleon
structure functions that will be discussed in Sect. 7.7.

4.1 Large-NC Considerations

The application of QCD to low-energy hadron physics is out of the reach
of ordinary perturbation theory understood as an expansion in the coupling
constant. Nevertheless, ’t Hooft already observed some time ago that QCD
has a hidden expansion parameter that may serve to establish a perturbation
theory [1, 2]. The essential procedure is to generalize QCD from an SU(3)

H. Weigel: The Skyrme Model, Lect. Notes Phys. 743, 43–64 (2008)
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gauge theory to SU(NC), where NC denotes the number of color degrees of
freedom. The expansion then is a power series in 1/NC. We already became
acquainted with that method in the discussion of the NJL-type models for
the quark flavor dynamics. Those models do not contain any direct color
interaction and NC solely appeared as combinatorial factor. For example,
from (2.22) we observe that the pion decay constant is O(NC) while (2.35)
and (2.36) together with G2 = O(1/NC) suggest that meson masses approach
constant values as NC → ∞. On the other hand (3.14) tells us that the soliton
energy is also O(NC). It is not surprising that NJL models without direct color
interaction provide an intuitive picture of the 1/NC expansion because in QCD
also the large-NC considerations are essentially combinatorial. In this and the
following sections we will present the central issues of these considerations as
put forward in [3].

QCD is the non-abelian gauge theory of color interactions. The matter
fields (quarks) are members of the fundamental representation and are thus
equipped with a single color index.1 The gauge bosons (gluons) that transmit
the interaction dwell in the adjoint representation and have two color indices.
One of these indices couples to the quark and the other to the anti-quark.
This suggests to consider gluons as composites of quarks and anti-quarks. Of
course, this only concerns counting the color degrees of freedom. For large-NC

we may furthermore ignore that the gluon color matrices are traceless; this
only supplies a single condition on N2

C quantities. Putting these properties
together we may find the combinatorial factors of any Feynman diagram by
replacing gluon lines with two lines for quarks and anti-quarks. This double
line notation for the color degrees of freedom is depicted in Fig. 4.1. We
may immediately apply this prescription to a typical Feynman diagram that
contributes to the gluon self-energy as shown in Fig. 4.2. Obviously the double-
line notation reveals the presence of an undetermined color index (c, c̄) that
must be summed over making up the combinatorial factor NC. The vertices
yield the factor g2

QCD and thus the full diagram behaves like g2
QCDNC. To

establish a converging 1/NC expansion this diagram must be of order unity.
Thus, a well-defined large-NC generalization of QCD requires

ba

quark anti−quark

a
b :=

a

b

gluon

Fig. 4.1. Double-line notation for the gluon color degrees of freedom in Feynman
diagrams. Here a, b̄ = 1, . . . , NC are the color labels

1 The generalization to arbitrary NC is not unique [4]. See [5, 6] (and refs. therein)
for alternative starting points to study fermions at NC �= 3.
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:=
a a

b

c
a

bb
c

a

b

Fig. 4.2. Double-line notation for a typical contribution to the gluon self-energy.
The dots on the left hand side indicate the gauge coupling constant gQCD

gQCD = O
(

1√
NC

)
. (4.1)

We are now prepared to compute the combinatorial factors of Feynman di-
agrams in QCD. In Fig. 4.3 we compare two similar diagrams. The upper
diagram has four color loops and the coupling constant enters with power
eight. Hence this diagram is O(N0

C). The lower diagram has only a single
color loop and six factors of the coupling constant, hence it is O(1/N2

C). In
the upper diagram all gluon lines lie in a single plane. This is not true for
the lower one. The generalization of the just-computed combinatorial factors
is that all non-planar diagrams are suppressed for large NC. Since there are
N2

C gluons but only NC fermions it is easy to understand that there are fewer
possibilities for internal fermion loops than gluon loops and hence the former
are suppressed.

The discussion of hadron properties involves matrix elements of color sin-
glet quark bilinears such as q̄γμq or q̄(i∂μ − gQCDAμ)q, where Aμ represents
the gluon field. Therefore we need to consider Feynman diagrams with quark
lines around the “edges” to which these bilinear operators can couple. These
diagrams should have at least a single quark loop at their the edges. A typical
representative of this class of diagrams is shown in Fig. 4.4 together with its
double-line notation. It is straightforward to verify that this diagram scales
as NC. This is actually the leading order for couplings to quark bilinears and
is common to diagrams with the following properties [3]:

O(1/NC)

O(N 
0)C

2

Fig. 4.3. Rephrasing typical QCD Feynman diagrams in the double-line notation.
The three gluon vertex gives a factor gQCD while the four gluon vertex has g2

QCD
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Fig. 4.4. Quark bilinear coupling (indicated by “×”) to loops in QCD and its
double-line notation

• Internal lines are all made from gluons.
• All lines are in a single plane.
• The edges only have quark lines. (4.2)

In the next step we examine correlation functions of color singlet quark bi-
linear operators in the large-NC limit. In particular we can learn about the
particle content by considering intermediate states that contribute to such
correlation functions. These intermediate states are identified from a diagram
that satisfies the criteria (4.2) using Cutkosky’s rules [7] according to which
we find the intermediate states from the particle content along any cut of
the Feynman diagram. Examples for correlation functions of two, three and
four quark bilinears are shown in Fig. 4.5. The fact that for large NC nei-
ther non-planar nor diagrams with internal quark loops contribute causes the
color indices along any such cut to be combined in a single trace, rather than
products of traces. This translates into the statement that in the large-NC

limit all intermediate states are quark bilinear color singlet objects, i.e., single
mesons, taking for granted that QCD is a confining theory. The absence of
two (or more) meson intermediate states implies that meson loops vanish as
NC → ∞. The quadratic correlation function of a quark bilinear operator
J(x) therefore has the simple spectral decomposition

〈J(x)J(y)〉 =
∫

d4k

(2π)4
eik(x−y)∑

i

ai(k)a
†
i (k)

k2 −m2
i

. (4.3)

Here the sum goes over all meson states than can couple to J(x). Furthermore
an ∼ 〈0|J |i〉 is the amplitude for J to create the meson i (with mass mi)
from the vacuum. We have just learned that the left hand side of (4.3) is
linear in NC. Turning to the right hand side this implies that an ∼

√
NC and

limNC→∞mn = const. The latter observation obviously is exactly what we

Fig. 4.5. Correlation functions of quark bilinear operators (“×”) and their inter-
mediate states (indicated by the dashed lines)
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found in the NJL model. On the other hand, infinitely many mesons must
contribute in the sum, (4.3) in order to reproduce the ln(k2) behavior in the
asymptotically free regime of QCD. The fact that the amplitude to create a
meson from the vacuum scales like

√
NC allows us to argue about the leading

1/NC behavior of an n-point meson correlation function. From the diagrams in
Fig. 4.5 we know that the correlation function of n quark bilinear operators
scales like NC. In the spectral decomposition this correlation function has
contributions of the form

〈0|J |i1〉 . . . 〈0|J |in〉︸ ︷︷ ︸
n terms

Γ(n)
i1...in

= O
(
N

n
2

C

)
× Γ(n)

i1...in
= O (NC) . (4.4)

Hence the coupling constant for the n-meson vertex scales as

Γ(n)
i1...in

= O
(
N

1−n
2

C

)
. (4.5)

For n = 4 this is consistent with what we observed in (2.41), Γ(4) ∝ 1/f2
π =

O (1/NC).
Accumulating the above results leads to the bold statement or conjec-

ture [3] that in large-NC QCD becomes equivalent to a meson theory with
meson loops and coupling constants getting more and more suppressed as NC

grows. It should be possible to construct this theory from meson phenomenol-
ogy. The caveat that infinitely many mesons might be involved should not be
an obstacle as long as we consider only the low-energy regime in which just a
limited number of light mesons should be relevant.

4.2 Baryons in Large-NC QCD

We now turn to the leadingNC dependences of baryon properties. In particular
we would like to understand the role of baryons in the effective meson theory
that we just motivated from large-NC QCD.

Low-lying baryons do not contain (valence) anti-quarks. So we have to
build color singlets without the use of anti-quarks. Thus baryons must be
composites of (at least) NC quarks. To make up a color singlet, the baryon
wave function should be totally anti-symmetric in the color coordinates and
thus symmetric in all other quantum numbers. In a non-relativistic framework
we might even assume that the remaining wave function describes a many
body “effective boson” with all constituents in the S-wave for the ground
state baryon.

In contrast to the discussion of mesons in Sect. 4.1 the examination of typ-
ical Feynman diagrams is not helpful in the context of baryons. For baryons
not only the combinatoric factors depend on NC but also the shape of the
diagrams itself. In Fig. 4.6 typical Feynman diagrams with one and two gluon
exchanges are shown. We expect m single gluon exchange diagrams to con-
tribute
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........ .... ....

Fig. 4.6. Feynman diagram for a propagating baryon built from NC quarks (in-
dicated by small dots) with one and two gluon exchanges. Interaction vertices are
shown as big dots

g2m
QCD

1
m!

[NC(NC − 1)]2m = O (Nm
C ) . (4.6)

Obviously the perturbation expansion does not have a smooth limit as NC

tends to infinity. Nevertheless baryon properties do have such a smooth limit.
We just have to find the proper way to sum all contributions. This makes
use of many body techniques and we will closely follow the arguments of [3]
and first consider the many body problem in a non-relativistic framework
assuming that the quarks are heavy and then argue that relativistic effects
for light quarks do not alter the large-NC results qualitatively.

The non-relativistic many body problem is treated in the Hartree approach
assuming that a single quark reacts on an average potential generated by the
NC−1 remaining quarks. In the non-relativistic case only the two-body forces
contribute and the Hamilton operator reads

H = NCM +
NC∑

i=1

−∂2
i

2M
− g2

NC

NC∑

i<j

1
|ri − rj |

, (4.7)

where M is the mass of a single quark and g =
√
NCgQCD is O(N0

C) in the
large-NC limit. Spin-dependent forces have been omitted in compliance with
the non-relativistic treatment. As argued above, in the ground state all quarks
should be in the S-wave. This motivates the ansatz for the (scalar) many body
wave function

Ψ(r1, . . . , rNC) =
NC∏

i=1

φ(ri) . (4.8)

We write E = NCε and imagine applying the variational principle to

〈Ψ|H − E|Ψ〉 = −NCε+NCM +
NC

2M

∫
d3r ∂φ∗(r) · ∂φ(r)

−NC(NC − 1)
2

g2

NC

∫
d3r1

∫
d3r2

|φ(r1)|2|φ(r2)|2
|r1 − r2|

. (4.9)

Hence φ = O(N0
C) and so is ε. This implies that baryon masses are O(NC).

Note and appreciate that this is exactly the behavior which we observed for
the soliton in the NJL model, cf. (3.14). Furthermore the fact that φ has



4.2 Baryons in Large-NC QCD 49

.... ....

Fig. 4.7. Feynman diagrams that generate three and four-body forces among the
constituents of a baryon

a smooth large-NC limit causes the typical extension of a baryon 〈r2〉 =
〈Ψ|

∑
i r

2
i |Ψ〉/NC to be O(N0

C).
The main observation above is that the average potential seen by a pre-

scribed quark in the baryon is O(NC). This is not surprising for the one
gluon exchange. When including relativistic effects we also have to consider
three- and four-body forces that arise from the non-abelian character of QCD.
Typical examples are shown in Fig. 4.7. There are (approximately) N3

C and
N4

C combinations of quarks that interact via three- and four-body forces,
respectively. The corresponding coupling constants are g4

QCD = g4/N2
C and

g6
QCD = g6/N3

C, so that that they contribute at leading order, O (NC) but do
not induce higher powers of NC in the variational functional, (4.9). Thus the
Hartree character of the wave function remains intact. So, no matter how com-
plicated (and probably infeasible) the relativistic Hartree problem is, baryon
masses are O(NC) and their radii are O(N0

C).
Figure 4.8 shows typical one gluon exchange contributions to baryon–

baryon and meson–baryon scattering. In the case of baryon–baryon scattering
we may pick the one gluon exchange from N2

C constituents. Together with
the factor g2

QCD these diagrams contribute O(NC) to the energy of the two-
baryon system, i.e., at the same order as the baryon mass. Thus, the Hartree
approximation to the corresponding 2NC body wave function

Ψ(r1, . . . r2NC) =
∑

P

(−1)P
[ NC∏

i=1

φ1(ri)
][ NC∏

j=1

φ2(rj)
]

(4.10)

with anti-symmetrization between quarks from different baryons insures a
smooth large-NC limit for the single quark components φi. Hence the baryon–
baryon scattering amplitude also has a smooth limit. The situation is differ-
ent for meson–baryon scattering. Since we can only pick a single quark from

...... ...... ......

B B B M’

Fig. 4.8. Single gluon exchange contributions to baryon–baryon (left) and meson–
baryon (right) scattering
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the meson, the one gluon exchange contribution to the energy functional is
O(N0

C), i.e., of the same order as the meson mass but suppressed compared
to the baryon mass. Since this implies that the (infinitely heavy) baryon is
essentially unaffected by the scattering process and only the meson reacts. In
a mathematical language this means that the baryon piece (φ) in the NC + 2
body Hartree wave function

Ψ(r1, . . .rNC ; x,y, t) =
∑

P

(−1)P
[ NC∏

i=1

φ(ri, t)
]
u(x,y, t) (4.11)

is the same as in (4.8) up to corrections of O(1/NC). In (4.11) we have made
explicit the time dependence. The anti-symmetrization is with respect to the
color coordinates of the quarks in the baryon and the quark in the meson.
Then the wave function is symmetric under the exchange of the quarks’ spatial
coordinates, ri and x. The meson part of the wave function u(x,y, t) satisfies
a linear integrodifferential equation [3],

i
∂

∂t
u(x,y, t) =

−1
2M

(
∂2
x + ∂2

y

)
u(x,y, t) − g2u(x,y, t)

|x − y| (4.12)

−g2φ(x)
∫

d3zφ∗(z, t)u(z,y, t)
[

1
|z − x| +

1
|z − y|

]
.

The non-symmetric appearance of the coordinates x and y under the integral
stems from the fact that the anti-quark coordinate y is not subject to anti-
symmetrization in (4.11). The waveequation (4.12) describes the scattering of
a meson in a background potential parameterized by φ(r), i.e., generated by
the baryon field. Obviously u(x,y, t) is O

(
N0

C

)
and so are the meson–baryon

scattering data that are extracted thereof.
Finally we have to ask how to put together the large-NC considerations for

mesons and baryons. The two meson scattering processes defines an effective
coupling constant, geff for the (equivalent) meson theory. Equation (4.5) shows
that

geff = Γ(2) ∝ 1
NC

. (4.13)

In turn we may rephrase the NC dependences of baryon properties via geff ,

• Baryon masses are proportional to 1/geff .
• Baryon radii are O

(
g0
eff

)
.

• Meson–baryon scattering amplitudes are also O
(
g0
eff

)
. (4.14)

In particular the first of these properties is obviously of non-perturbative na-
ture. In Chap. 1 we have already discussed that solitons are non-perturbative
objects in field theories. As a matter of fact the behavior (4.14) on the effective
meson coupling is characteristic for soliton configurations. In the next section
we will verify these properties for the simple example of the kink soliton in
the φ4 theory. This congeneric behavior with geff has led to the conjecture [3]
that baryons emerge as the soliton solutions in the effective meson theory that
becomes equivalent to QCD in the large-NC limit.
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Note that there is a conceptual difference to the motivation of the soliton
picture put forward in Chaps. 2 and 3. In those chapters we intensively studied
the fermion determinant and its gradient expansion. In particular the obser-
vation that the chiral field carries baryon number via vacuum polarization
effects resulted from identifying the gradient expansion of the baryon current,
cf. Appendix C. For any gradient expansion to be sensible an energy scale is
required to which the potentially small gradients are compared. In the case
of the fermion determinant the scale is set by the constituent quark mass,
i.e., the scale of dynamical chiral symmetry breaking. On the other hand, the
avenue via large NC does not refer to chiral symmetry at all; even the number
of flavors is unessential and one would expect these arguments to also hold
if QCD had only a single (light) quark. No meson theory (that were to be
mainly characterized by the UA(1) anomaly, (2.5)) is known that supports a
soliton solution to be identified as a baryon. This has triggered some criti-
cism of the soliton picture [8]. Indeed a sole motivation via large NC is not
absolutely compelling. However, the previous chapters have shown that chiral
symmetry breaking induces strong enough coupling to the meson fields that
solitons with baryon number emerge. In turn their properties are completely
consistent with the results of large-NC QCD, (4.14).

4.3 A Simple Soliton

Here we briefly review the so-called kink soliton as a simple example for a
classical soliton inD = 1+1 dimensions. See [9] for a more thorough discussion
as well as additional examples. The model Lagrangian contains a fourth order
self-interaction

Lkink =
1
2
(Φ̇2 − Φ′2) − λ

4

(
Φ2 − m2

λ

)2

(4.15)

for the scalar field Φ. Obviously we identify λ ∼ geff as the effective meson
coupling constant, Γ(4). To complete the analogy with the large-NC discussion
we demand that m remains constant when geff is changed.

There are two distinct vacuum configurations Φ = ± m√
λ
. It is straightfor-

ward to verify that classically the Lagrangian, (4.15), has static2 stationary
points

Φ±(x) = ± m√
λ

tanh
(
m√
2
x

)
, (4.16)

that mediate between these vacua. This profile function is called the kink
soliton and is shown in Fig. 4.9. Obviously this solution exhibits a non-
perturbative (even non-analytic) dependence on the coupling constant, λ.
Asymptotically, as x → ±∞ this profile function approaches either of the

2 Time-dependent solutions can be constructed via Lorentz boosts.
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Fig. 4.9. The radial dependence of the kink profile, Φ+(x) in units of m/
√
λ and

its energy density ε, i.e., the normalized integrand of (4.17)

two vacua. This is necessary for the total energy to be finite. This energy
functional can be easily obtained from the Lagrangian, (4.15), since for static
configurations we always have E = −

∫
dxL. Substituting the profile, (4.16),

yields

E+ =
∫ ∞

−∞
dx

{
1
2
Φ′2

+ +
λ

4

(
Φ2

+ − m2

λ

)2
}

=
2
√

2
3

m3

λ
= O (1/geff) , (4.17)

where the prime denotes the derivative with respect to the spatial coordi-
nate, x. Equation (4.17) manifestly meets the first of the conditions in (4.14).
To measure the extension of the kink we compute the expectation value 〈x2〉
of the kink with respect to the energy density,

〈x2〉 =
1
E

∫ ∞

−∞
dxx2

{
1
2
Φ′2

+ +
λ

4

(
Φ2

+ − m2

λ

)2
}

=
1
m2

(
π2

6
− 1

)
= O

(
g0
eff

)
, (4.18)

again in correspondence with (4.14). To discuss the analog of meson–baryon
scattering we introduce time-dependent fluctuations about the kink, Φ(x, t) =
Φ+(x) + η(x, t). These fluctuations are the meson wave functions in the kink
background and their linearized equations of motion are

0 =
[
∂2

∂t2
− ∂2

∂x2
−m2 + 3λΦ2

+(x)
]
η(x, t)

=
[
∂2

∂t2
− ∂2

∂x2
−m2 + 3m2tanh

(
m√
2
x

)]
η(x, t) . (4.19)
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This is the kink model analog to (4.12). In (4.19) any dependence on the
effective coupling constant has disappeared. Thus the wave function η and
all scattering data extracted thereof are O(g0

eff). Hence the features of the
large-NC picture for baryons is met by this simple soliton.

There is one more interesting feature worth mentioning. The divergence
of the current

jμ =

√
λ

m
εμν∂

νΦ (4.20)

vanishes by pure definition. It is the D = 1 + 1 dimensional analog of the
Goldstone–Wilczek current [10], see also (C.15). The corresponding (topolog-
ical) charge

Q =
∫

dx j0 =

√
λ

m
[Φ(∞) − Φ(−∞)] (4.21)

measures the difference between the configurations at the spatial infinities.
Since Q is conserved regardless of whether or not the equations of motion
are satisfied, fluctuations like η(x, t) will not alter its value. Hence profile
functions with different charges cannot be smoothly connected by successive
infinitesimal changes. For that reason profile functions fall into distinct, so-
called topological classes that are characterized by the topological charge Q.
In Sect. 4.6 we will observe that the baryon number current as obtained via
the gradient expansion to the NJL model, see Appendix C, is the chiral model
analog of (4.20).

4.4 Skyrme Model Soliton

Unlasting we will discuss the famous Skyrme model [11] as the prototype
soliton picture for baryons. The resulting soliton solution is often referred to
as the Skyrmion. It is amusing to note that this model for strong interactions
emerged before the invention of quarks [12]. Essentially we want to apply the
results (and conjectures) from the previous sections that baryons emerge as
solitons to a physically sensible low-energy meson theory. The basic degrees
of freedom should thus be the pions (and kaons for Nf = 3) and the model
Lagrangian should reflect all features of chiral symmetry. Hence the unique
starting point is the non-linear σ-model Lagrangian, (2.40),

Lnlσ =
f2
π

4
tr
[
∂μU∂

μU †] , (4.22)

that we already obtained as the leading order gradient expansion to the NJL
model, (2.40). As for the NJL model soliton the ansatz of highest symmetry
is of hedgehog type,3 (3.22)
3 In the Skyrme model context the chiral angle is often denoted F (r) rather than

Θ(r) for the NJL model. Also, as a pure matter of convention, the boundary
conditions on F (r) are such that F (0) − F (∞) = nπ with positive n.
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U(x) = U0(x) ≡ exp (iτ · x̂F (r)) with r = |x| . (4.23)

For this ansatz (4.22) yields the energy functional, E = −
∫

d3xL,

Enlσ[F ] = 2πf2
π

∫ ∞

0

dr
(
r2F ′2 + 2sin2F

)
, (4.24)

where the prime denotes the derivative with respect to the radial coordinate, r.
Simple scaling arguments [13] show that Enlσ[F (λr)] = Enlσ[F (r)]/λ so that
the chiral angle obtained as the stationary point of Enlσ would ultimately van-
ish for r �= 0 in any (iterative) variational approach. This conclusion remains
unchanged even when explicit chiral symmetry breaking is included via the
pion mass term

Lm =
m2
πf

2
π

4
tr
[
U + U † − 2

]
. (4.25)

which adds (3.26) (with Θ → −F ) to the energy functional. A theory that
contains stable solutions requires higher derivative terms and Skyrme sug-
gested [11] the four derivative term,

LSk =
1

32e2
tr ([αμ, αν ] [αμ, αν ]) , αμ = U †∂μU , (4.26)

which is only quadratic in the time derivatives as a result of the use of
the commutator. Later this feature will be very advantageous in the quan-
tization procedure. In (4.26) e is a free parameter. From the expansion,
αμ = iτ ·∂μπ/fπ+ . . ., we observe that the coefficient of the four pion term is
proportional to 1/(e2f4

π). Comparison with (4.5) reveals that e = O(1/
√
NC).

Putting (4.22), (4.25) and (4.26) together yields the classical energy func-
tional

Ecl[F ] =
2πfπ
e

∫ ∞

0

dx

{

x2F ′2 + 2 sin2F + 2μ2
πx

2 (1 − cosF )

+sin2F

(
2F ′2 +

sin2F

x2

)}

. (4.27)

The dimensionless quantities x = efπr and μπ = mπ/(efπ) have been intro-
duced and the prime denotes the derivative with respect to x. From what we
have learnt about the large-NC behavior of fπ and e we immediately con-
clude that Ecl = O(NC), as it should. Upon variation we find the stationary
condition,

(
x2 + 2 sin2F

)
F ′′ + 2xF ′ − sin 2F − sin 2F

(
sin2F

x2
+ F ′2

)
= μ2

πx
2sinF .

(4.28)
In the following sections we will argue that F (0) = π and F (∞) = 0 are
suitable boundary conditions to represent unit baryon number configurations.
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The corresponding numerical solution to (4.28) has the shape similar to Θ(r)
in Fig. 3.3 with the sign reversed. Nevertheless there is one essential difference
between the Skyrmion and the NJL model soliton. As seen from the last term
in (4.27) finite static energy requires F (0) = nπ with n an integer. Stated
otherwise, configurations with different values of the chiral angle at r = 0
(assuming all these configurations vanish at infinity) are separated by infinite
energy barriers in the Skyrme model. Hence all configurations fall into distinct
classes that are characterized by the integer F (0)/π. In Sect. 4.6 we will verify
that this integer is indeed the topological charge. The numerical analysis yields
Ecl = 72.9fπ/e for the solution of (4.28) with F (0) = π in the chiral limit
mπ = 0. The parameter dependence cannot be completely factored when
mπ �= 0, yet the pion mass dependence is only weak.

For completeness we work out the asymptotic behavior of the chiral angle,

F (r) �
r → ∞ A (1 +mπr)

e−mπr

r2
. (4.29)

This solution is obtained by linearizing the equation of motion (4.28) in F . The
constant of proportionality, A, is determined by solving the full differential
equation and matching to F (0) = nπ. In the chiral limit, mπ = 0, the chiral
angle decays only with a power law, rather than exponentially.

4.5 Equations of Motion and Wess–Zumino Term

We have already explained that the effective meson action should be aug-
mented by the Wess–Zumino term, (2.50). In Sect. 2.4 we have seen that
it arises because the regularized fermion action is not invariant under axial
transformations and in Appendix C we argue that it is needed to model the
baryon number current after integrating out the fermions. In this section we
will repeat Witten’s argument for including the Wess–Zumino term [14]. This
is particularly interesting because it does not make direct reference to quarks
but rather relies on the pseudoscalar nature of the pions and kaons for which
the effective meson theory is constructed.

Due to chiral invariance the local Lagrangian will be of the form

L =
∑

n

c(n)
μ1,...,μ2n

tr [αμ1,...,μ2n ] . (4.30)

The constants c(n) can only be constructed from the tensors gμν and εμνρσ .
The αμ1,...,μ2n are either powers of αμ or derivatives thereof. The contributions
that have c(n)s completely built from gμν will ultimately be invariant under
parity reflection,

Π : t→ t and x → −x . (4.31)

The simplest term that involves the Levi–Cevita tensor is
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εμνρσtr [αμαναρασ] = 0 , (4.32)

since this tensor is anti-cyclic in four space–time dimensions. Other (higher
order) terms involving εμνρσ can similarly be argued to vanish or to be total
derivatives. Hence the effective meson theory seems to be invariant under the
transformation, (4.31). However, that is too much of a symmetry. The basic
fields of the theory should be pseudoscalars, i.e., under parity they should
transform as

Π : π(x, t) → −π(−x, t) ⇔ U(x, t) → U †(−x, t) . (4.33)

The theory should be invariant only under the combined transformations, (4.31)
and (4.33). But we face the difficulty that in D = 3 + 1 dimensions no local
Lagrangian accomplishes that requirement. The situation is similar to the
classical mechanics problem of a particle with charge e moving in the field of
a magnetic monopole [15, 16] on a sphere of unit radius.4 The force on the
particle is

F mag.mon. = eẋ × B =
eg

r3
ẋ × x . (4.34)

There is no Lagrange function that via the Euler–Lagrange equations of mo-
tion yields this force on the very right hand side. In general, the action

e

∫
dt˙· A = e

∫

C

dx · A , (4.35)

leads upon variation to the Lorentz force in the middle of (4.34). For the spe-
cial case of the magnetic monopole a singular vector potential, A is required
to ensure both, B = ∂ ×A and ∂ ·B = 0. In classical mechanics it suffices to
consider the equation of motion (4.34) and the actual value of the action is
of minor importance. This is no longer the case when quantizing the system.
Then we investigate the generating functional

Z[T ] =
∫

x(T )=x(0)

[dx] exp
{

i
�

[
. . . + e

∮

C

dx · A
]}

, (4.36)

where the ellipsis denote the non-interaction pieces of the action. Obviously
only closed trajectories C need to be considered and we may utilize Stoke’s
theorem to reintroduce the magnetic field,

e

∮

∂S

dx · A = e

∫

S

dS · B . (4.37)

The choice of the two-dimensional surface S whose boundary is ∂S, which is
the physical trajectory is not unique. There always exists the complementary
surface S̄ with the same boundary. Since S ∪ S̄ ∼ S2, which is the surface

4 The unitary condition U†U = 1 translates into r = |x| = 1 for this example.
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onto which the particle is constrained, and the orientations of S and S̄ are
opposite, the fact that the choice should not affect the action implies

e

�

∮

S2

dS · B = 2nπ , (4.38)

with n an integer. Substituting the monopole magnetic field yields the cele-
brated monopole charge quantization rule

eg =
n

2
� . (4.39)

When expressed in terms of the physical field B, the action, (4.37), in-
volves integration over an additional coordinate. In analogy we add a five-
dimensional integral to the mesonic action [14]

ΓWZ = iλ εμνρστ
∫

M5

d5x tr [αμαναρασατ ] , (4.40)

with the condition that the boundary of the manifold M5 is the physical
four-dimensional Minkowski space, ∂M5 = M4. At this point λ is still a free
parameter. We want to obtain the corresponding equations of motion for the
pseudoscalar fields from the variation principle. A possible parameterization
of the variation is local chiral transformation of the chiral field

U(x) → U(x) eiε(x) (4.41)

where ε(x) is a hermitian Nf ×Nf matrix field. To linear order we find,

αμ → αμ + i∂με+ . . . . (4.42)

The ellipsis indicate terms that do not contain derivatives of ε. Because of the
global axial symmetry of the action they ultimately cancel. For the discussion
of the parity properties it suffices to consider the non-linear σ model, (4.22),
as a representative for the contributions allowed in (4.30). For the variation
of Γ =

∫
d4xLnlσ + ΓWZ we find

δΓ =
f2
π

2

∫

M4

d4x tr [iαμ∂με] + 5iλεμνρστ
∫

M5

d5x tr [(i∂με)αναρασατ ]

=
f2
π

2

∫

M4

d4x tr [iαμ∂με] + 5iλεμρστ
∫

M4

d4x tr [(i∂με)αρασατ ] , (4.43)

where εμνρσαμαναρασ = εμνρσ∂
μ(αναρασ) and Stoke’s theorem have been

used to gain a purely four-dimensional functional. Hence we arrive at the
equations of motion

f2
π

2
∂μα

μ + 5iλεμνρσαμαναρασ = 0 . (4.44)

The first term is odd in αμ, as are all other contributions from (4.30), but the
last term is even. Thus the transformation (4.33) that translates to
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αμ → −UαμU † and ∂μα
μ → −U∂μαμU † , (4.45)

causes a relative sign in (4.44). This is exactly compensated by the sign change
due to (4.32). We have reached the desired result: The Wess–Zumino action
is required in the effective meson theory to enforce the pseudoscalar nature of
the Goldstone bosons.

4.6 Topological Structures

We have not yet determined the coefficient λ. The topological structure of the
Wess–Zumino action can be used to further specify λ. But first we note that
λ ∈ R follows from the equation of motion (4.44) and α†

μ = −αμ.
There is a complementary manifold M̄5 that has the same boundary, M4

as M5 itself. As in the monopole example above, the choice on which of the
two manifolds the Wess–Zumino action is computed must not alter the physics
and therefore we demand,

iλεμνρστ
∫

M5∪M̄5

d5x tr [αμαναρασατ ] = 2πn , (4.46)

where n again is an integer. We evaluate the generating functional with initial
and final time steps identified and thusM5 ∪ M̄5 is compact and isomorphic to
S5. Consequently the left hand side of (4.46) is proportional to Q =

∫
S5

d5x j0
where5

jμ(x) =
i

480π3
εμνκρστ tr [ανακαρασατ ] (4.47)

is the winding number current for the mapping S5 �→ SU(3), cf. (4.20) that
has the same structure in a lower dimensional context. Again “it” jμ has zero
divergence regardless of whether or not the equations of motion are satisfied.
Therefore Q is conserved and actually is an integer for topological reasons.6

Thus the condition, (4.46) translates into

λ =
n

240π2
. (4.48)

The physics requirement that upon gauging ΓWZ with respect to the elec-
tromagnetic interaction reproduces the QCD result for the decay π0 → γγ
finally gives the condition that this integer equals the number of color degrees
of freedom, i.e., n = ±NC; see Sect. C.4 in Appendix C. A particular choice
of the phase yields (2.50), which is repeated here for completeness,

5 In general, the winding number of the mapping S2n+1 �→ SU(n + 1) is

Q =
(

i
2π

)n−1 n!
(2n+1)!

εμ1...μ2n+1

∫
d2n+1x tr

[
(U†∂μ1U) · · · (U†∂μ2n+1U)

]
for U ∈

SU(n+ 1) [17].
6 The homotopy structure is Π5(SU(3)) ∼ Π5(S5) = Z.
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ΓWZ = − iNC
240π2

∫

M5

d5x εμνρστ tr [αμαναρασατ ] . (4.49)

In Appendix C we discuss that the variation of the Wess–Zumino term
due to gauge transformations of αμ is local in ordinary space. So are the
associated symmetry currents. In particular, gauging the UV(1) symmetry
defines the baryon number current, (C.26)

Bμ =
1

24π2
εμνρσ tr [αναρασ] , (4.50)

which also has the form of a winding number current as in (4.20) and (4.47). It
is the topological current for the mapping S3 �→ SU(2). The soliton configura-
tions assume the same values for all points at spatial infinity, e.g., limr→∞ = 1.
That is, to characterize the mapping all these points are identified and the
space R

3 is compactified to S3. To describe mappings into SU(N) we may
consider pertinent SU(2) subgroups thereof. Therefore S3 �→ SU(2) is indeed
the appropriate mapping for solitons in the chiral model. Most importantly it
implies that the baryon number is not only conserved but indeed integer.

Substituting the hedgehog configuration, (4.23) yields

Bμ = −F ′ sin
2 F

2π2
gμ0. (4.51)

Hence configurations with boundary conditions F (∞) = 0 and F (0) = nπ
have baryon number n. In particular, the configuration with F (0) = π has
unit baryon number.

There is a lower bound for the energy of a configuration with a prescribed
baryon number. Consider

tr
(
fπ
2
αi ±

1
4e
εijkαjαk

)2

= tr
(
f2
π

4
αiαi +

1
32e2

[αi, αj ]
2 ± 6

π2

e
fπB0

)
.

(4.52)
By construction the left hand side is non-negative. Hence integrating the right
hand side yields the inequality

Ecl ≥ 6
π2

e
fπ|B0| , (4.53)

for mπ = 0. This relation is often called the Bogomol’ny [18] bound because of
its similarity to the energy bound for the ’t Hooft–Polyakov monopole [19, 20],
see also [9]. However, this bound was already known to Skyrme [11]. The unit
baryon number hedgehog solution, (4.23), exceeds that bound by about 20%.

The Skyrme term, (4.26), is just one possibility to stabilize the soliton.
Sometimes the six-order term

L6 = − ε
2
6

2
BμB

μ (4.54)

is used instead or in addition to the Skyrme term, see e.g., [21, 22, 23]. This
stabilizing term only has two time derivatives, as does the Skyrme term.
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4.7 Vector Interactions

Certainly the Skyrmion is just the simplest possible soliton within hadron
models. Actually it fails to properly describe a number of phenomena. Most
of them can be accounted for by extending the effective model to also con-
tain vector meson degrees of freedom. Here we will briefly sketch the idea
of introducing them. For more details we refer to the reviews [24, 25, 26] on
the incorporation of vector mesons into chiral Lagrangians and chiral soli-
ton models. These vector meson models also provide some phenomenological
motivation for the stabilizing terms (4.26) and (4.54).

Here we will present a phenomenologically motivated approach to incor-
porate vector degrees of freedom in a chiral invariant manner. We particularly
sketch the so-called massive gauge approach of [27, 28, 29]. The hidden sym-
metry approach [26] applies different techniques to incorporate the ρ-meson
in a chirally invariant way but ends up with the identical Lagrangian.

The major problem arises when one wishes to eliminate the axial vector
field a1 while keeping the ρ-meson without breaking the chiral symmetry. This
elimination is desirable as the large a1 mass suggests that it is not important
for the description of low-energy hadron properties and keeping a1 inflates the
model and reduces its predictability. However, the corresponding field variable
cannot simply be set to zero, after all the a1 and ρ-mesons are chiral partners.
We therefore start from the non-linear σ model, (4.22), together with left- and
right-handed vector fields that transform like gauge fields under local chiral
transformations that are defined by U(x) → L(x)U(x)R†(x):

AμL(x) → L(x)
(
AμL(x) +

i
g
∂μ
)
L†(x)

AμR(x) → R(x)
(
AμR(x) +

i
g
∂μ
)
R†(x) , (4.55)

which introduces the gauge coupling, g, as a new parameter. Its physical inter-
pretation will be discussed shortly. Under parity these chiral fields transform
into one another, AL

μ ↔ ARμ. The vector and axial-vector meson fields as
introduced in Sect. 2.4 are sum and differences of AL and AR. It is then
straightforward to gauge Lnlσ to become invariant under local chiral symme-
tries. In the next step either of the fields AL and AR is to be eliminated in
a chirally consistent way. This can, e.g., be accomplished by imposing the
condition,

AμL = U

(
AμR +

i
g
∂μ
)
U †. (4.56)

A convenient realization thereof introduces the ρ-meson field,

AμL = ξ

(
ρμ +

i
g
∂μ
)
ξ† and AμR = ξ†

(
ρμ +

i
g
∂μ
)
ξ (4.57)
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where ξ = U1/2 is the root of the chiral field. Since under parity ξ ↔ ξ†, it is
easy to verify that ρμ contains vector meson degrees of freedom only. Under
the chiral transformation this vector field also behaves like a gauge field [30]

ρμ → K

(
ρμ +

i
g
∂μ

)
K† and ξ → LξK† = KξR†. (4.58)

The last equation defines the matrix K. For vector transformations it is triv-
ially solved by L = R = K while for axial transformations, L = R†, the
matrix K depends on the meson field configuration ξ.

As the realization (4.57) is merely a gauge transformation for the fields
AμL,R, the kinetic part for the vector mesons is uniquely given by

− 1
2
tr [Fμν(ρ)Fμν(ρ)] . (4.59)

Here Fμν(ρ) denotes the field tensor associated with the vector mesons ρ
and ω, which are incorporated via ρμ = (ωμ1 + ρμ · τ ) /2 in the two-flavor
reduction. The ρ-meson field acquires a mass by adding terms quadratic in
AμL,R which are invariant under global chiral transformations only

m2
0

2
tr [ALμA

μ
L +ARμA

μ
R] − B

2
tr
[
ALμUA

μ
RU

†] . (4.60)

The identical coefficients of the first two terms are demanded by parity invari-
ance. Since (4.57) is a local chiral transformation that maps the chiral field
U to the identity matrix, the gauged non-linear σ-model Lagrangian vanishes
identically in this realization. Nevertheless Lnlσ arises in the model when sub-
stituting the realization, (4.57), into the mass-type terms, (4.60). Identifying
the parameters 4m2

0− 2B = m2
V and 4m2

0 +2B = g2f2
π (mV denotes the aver-

age ρ–ω meson mass) and adding a pseudoscalar mass term yields the normal
parity part of the Lagrangian for pseudoscalar and vector mesons,

LS = f2
πtr [pμpμ] +

m2
πf

2
π

2
tr
[
U + U † − 2

]

−1
2
tr [Fμν (ρ)Fμν (ρ)] +m2

Vtr [RμRμ] . (4.61)

The fields

pμ =
i
2
(
ξ∂μξ

† − ξ†∂μξ
)

and vμ =
i
2
(
ξ∂μξ

† + ξ†∂μξ
)

(4.62)

are proportional to the induced fields in (2.46) for the special choice ξ†L =
ξR = ξ. Since pμ = i

2ξ
†αμξ, the first term is indeed Lnlσ. Furthermore the

construction (4.58) ensures that Rμ = ρμ−vμ/g transforms simply under chi-
ral transformations: Rμ → KRμK

†. The last term in (4.61) not only contains
the ρ-meson mass term but also the ρππ vertex
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m2
Vtr [RμRμ] =

m2
V

2

{
ρμ · ρμ +

1
gf2
π

ρμ · (π × ∂μπ) + . . .

}
. (4.63)

Utilizing the experimental data for the pion decay constant fπ = 93 MeV and
the width Γ(ρ→ 2π) ≈ 151 MeV [31] finally fixes the gauge coupling constant
g ≈ 5.6.

It is interesting to consider a large mass expansion for the ρ-meson. The
leading order term Rμ = 0 gives ρμ = vμ

g . Subsequent substitution,7

− 1
2
tr
[
Fμν

(
v

g

)
Fμν

(
v

g

)]
=

1
32g2

tr {[αμ, αν ] [αμ, αν ]} (4.64)

suggests to identify the Skyrme constant (4.26) as e = g and thus extract it
from meson phenomenology.

In order to complete the vector meson model Lagrangian the anomalous
terms that contain the Levi–Cevita tensor, εμναβ have to be added. For their
presentation it is most useful to introduce the notation of differential forms:
AR = AR

μdxμ, d = ∂μdxμ, etc. (cf. Appendix C). Since the left and right
“gauge fields” are related via the chiral constraint, (4.56), the number of linear
independent terms, which transform properly under the chiral transformation
as well as parity and charge conjugation, is quite limited [27, 28, 29]:

ALα3 , dALαAL −ALα dAL +ALαALα , 2
(
AL
)3
α+

i
g
ALαALα . (4.65)

Rewriting these combinations in terms of the field variables of (4.61) yields
the abnormal parity part of the action

Γan =
2NC

15π2

∫
Tr(p5) (4.66)

+
∫

Tr
[
4i
3

(γ1 +
3
2
γ2)Rp3 − g

2
γ2F (ρ)(pR −Rp) − 2ig2(γ2 + 2γ3)R3p

]
.

The first term is nothing but the Wess–Zumino term. The additional param-
eters γ1, γ2 and γ3 correspond to the invariant terms listed in (4.65). These
parameters should ultimately be fixed from meson properties. In [29] two of
the three unknown constants, γ1,2,3 were determined from purely strong in-
teraction processes like ω → 3π. Defining h̃ = −2

√
2γ1/3, g̃V V φ = gγ2 and

κ = γ3/γ2 the central values h̃ = ±0.4 and g̃V V φ = ±1.9 were found. Within
experimental uncertainties (stemming from the errors in the ω−φ mixing an-
gle) these may vary in the range h̃ = −0.15, . . . , 0.7 and g̃V V φ = 1.3, . . . , 2.2
subject to the condition |g̃V V φ − h̃| ≈ 1.5. The third parameter, κ could not
be fixed in the meson sector. As we will see later, a value around κ ≈ 1 is
favored from predictions on baryon properties in the soliton picture.

7 Direct computation gives Fμν

(
v
g

)
= −i

4g
ξ† [αμ, αν ] ξ [24]. The conventions of [24]

for the ρ-field and the coupling g differ from the present ones such that the
product gρμ is the same.
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As mentioned before, the action, (4.66) contains the ω–3π coupling. It is of
the form Lω3π = gωωμB

μ with gω = 2π2(2γ1 +3γ2). Eliminating the ω-meson
in a large mass expansion similar to (4.64) produces the sixth order term,

(4.54), with ε26 =
g2
ω

m2
V

.

The full vector meson action,
∫

d4xLS + Γan, contains static soliton solu-
tions. The appropriate ansätze with zero grand spin are

ξ(x) = exp
(

i
2
x̂ · τF (r)

)
, ω0(x) =

ω(r)
g

, ρi,a(x) =
G(r)
gr

εijax̂j , (4.67)

while all other field components vanish. Again, the isovector component of the
vector fields assumes the Wu–Yang structure. Typical profile functions that
minimize the energy functional (primes denote derivatives with respect to the
radial coordinate r)

E[F, ω,G] = 4π
∫

dr
{f2

π

2
(
F ′2r2 + 2sin2F

)
+m2

πf
2
π(1 − cosF )r2

− r2

2g2
(ω′2 +m2

V ω
2) +

1
g2

[
G′2 +

G2

2r2
(G + 2)2

]

+
m2

V

g2
(1 +G− cosF )2 +

γ1

g
F ′ω sin2F

−γ2

g
G′ω sin2F +

γ3

g
F ′ωG(G+ 2)

+
1
g

(γ2 + γ3)F ′ω
[
1 − 2(G+ 1)cosF + cos2F

] }
(4.68)
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Fig. 4.10. Profile functions of the soliton configuration, (4.67) as functions of the
dimensionless quantity x =

√
2gfπr
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are shown in Fig. 4.10. Again the boundary condition F (0) = π and F (∞) = 0
is chosen to comply with unit baryon number because the baryon number
current is that of the purely pseudoscalar model, (4.50). Having established
these boundary conditions for the chiral angle, the boundary values for the
other fields, e.g., G(0) = −2, follow from the finite energy condition.

So far we have succeeded in constructing the soliton solutions in various
models (NJL, Skyrme, vector mesons) and showing that these configurations
carry unit baryon number. However, no other quantum number has been
identified so far. That project will be the subject of the following chapters.
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5

Soliton Quantization in Flavor SU(2)

In this chapter, we will illustrate the interpretation of the soliton solutions
in effective meson theories as baryons. So far, we have not accomplished the
important task of assigning good spin and flavor quantum numbers to the
soliton. For this purpose, we will have to quantize rotational degrees of freedom
both in coordinate and in flavor spaces. The hedgehog configuration, (4.23), is
invariant under a combined coordinate and flavor rotation but not with respect
to either of them separately. This means that the soliton “spontaneously”
breaks rotational and flavor invariance: The ground state (in the unit baryon
number sector) does not maintain the symmetries of the theory. On the other
hand, any configuration that is related to the hedgehog by constant rotations
in coordinate or flavor spaces is equally well a solution to the static equations
of motion.

Ordinary quantization in field theory introduces (small amplitude) fluc-
tuations and quantizes these degrees of freedom canonically. However, for a
system with spontaneous symmetry breaking, there is an obstacle to that
treatment. Due to the rotational symmetry, there is no restoring force for
rotational excitations about the soliton. They become large amplitude fluctu-
ations and must be treated differently. A common approach is to canonically
quantize the collective coordinates that parameterize those large amplitude
fluctuations. We will first establish that approach with the help of a simple
quantum mechanical example. Before actually applying it to build nucleon
and Δ states, we will discuss the quantization of the rigid top and intro-
duce the concept of Euler angles as collective coordinates of the symmetry
group SU(N).

5.1 Collective Coordinates

Consider a mechanical system that is defined by a radially symmetric poten-
tial, V (r), which supports a minimum at r0 �= 0. There are infinitely many

H. Weigel: Soliton Quantization in Flavor SU(2), Lect. Notes Phys. 743, 65–83 (2008)

DOI 10.1007/978-3-540-75436-7 5 c© Springer-Verlag Berlin Heidelberg 2008
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configurations that minimize the system; all are related to one another by
constant rotations.

The quantum mechanics for a particle of mass m is described by the
Schrödinger-type equation in a partial wave decomposition

i
∂

∂t
ψ�(t, r) =

[
− 1

2m
∂2

∂r2
+
�(�+ 1)
2mr2

+ V (r)
]
ψ�(t, r) , (5.1)

where � is the orbital angular momentum quantum number. We assume that
the potential V0 is characterized by a coupling constant and that the angular
barrier is of subleading order in the respective expansion. In the case of the
chiral soliton that suppression factor is 1/NC. In such a scenario, it is legiti-
mate to first consider the potential separately and solve the eigenvalue equa-
tion for the S-wave channel, � = 0. The solutions are radial excitations just
as, e.g., the harmonic oscillator levels in one dimension with wave functions
ψn,�=0(r). The corresponding rotational excitation energies are then obtained
in first-order perturbation theory:

E
(rot)
n,� =

�(�+ 1)
2m〈r2n〉

. (5.2)

Here 〈r2n〉 = 〈n, 0|r2|n, 0〉 are the matrix elements with respect to the before-
hand constructed states 〈r|n�〉 = ψn,�(r). In particular, we have for the ground
state 〈r20〉 = r20 , which is the position of the minimum of the potential V (r).

We will now explain how to obtain the spectrum, (5.2), in a semiclas-
sical treatment with the help of collective coordinates. Classically, we want
to solve for the trajectory r(t). The potential has a minimum at a non-zero
value of the radius vector. To specify a solution we have to pick a direction,
say r0 = r0êz . Of course, that is nothing but spontaneous symmetry break-
ing and provides a static solution to the classical problem. For quantization,
however, we need to construct time-dependent trajectories. By construction,
the (constant) transformation

r0 −→ D r0, (5.3)

whereD = (Dij) is an orthogonal rotation matrix, does not alter the potential.
It transforms the (spontaneously) chosen solution along the symmetries of the
theory. It is thus suggestive that

r(t) = r0D(t) êz (5.4)

is a reasonable approximation to the exact time-dependent solution. We sub-
stitute the ansatz equation (5.4) into the Lagrange function

L =
m

2
ṙ2 − V (r) =

mr20
2
(
Ω2

1 + Ω2
2

)
− V (r0), (5.5)

where the time derivative of the rotation matrixes enter via the angular ve-
locities:
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Ωi =
1
2
εijkDjlḊkl . (5.6)

We consider (5.5) as a starting point and attempt to quantize the time-
dependent degrees of freedom contained in D. These degrees of freedom are
the collective coordinates and are suitably chosen as the three Euler angles:

Dij(Φ,Θ,Ψ) =

⎛

⎝
cosΦ sinΦ 0
−sinΦ cosΦ 0

0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 cosΘ sin Θ
0 −sinΘ cosΘ

⎞

⎠

⎛

⎝
cosΨ sin Ψ 0
−sin Ψ cosΨ 0

0 0 1

⎞

⎠

ij

.

(5.7)
The resulting Lagrangian reads

L =
mr20
2

(
Θ̇2 + sin2Θ Φ̇2

)
− V (r0) . (5.8)

The kinetic part is of the general form ξ̇igij(ξ)ξ̇j where ξi are the dynamical
variables while gij(ξ) is a coordinate-dependent metric tensor. Such a term is
quantized by substituting it in the Hamiltonian according to [1]:

1
2
ξ̇igij(ξ)ξ̇j −→ − 1

2
√
g

∂

∂ξi

(
g−1

)
ij

√
g
∂

∂ξj
, (5.9)

where g = det(gij). This yields

H = − 1
2mr20

(
1

sinΘ
∂

∂Θ
sin Θ

∂

∂Θ
+

∂2

∂Φ2

)
+ V (r0) . (5.10)

Obviously, the first part is nothing but the angular part of the three-
dimensional Laplace operator written in Euler rather than polar and
azimuthal angles. It can readily be diagonalized resulting in the energy eigen-
values

E� =
�(�+ 1)
2mr20

+ V (r0) . (5.11)

This is nothing but (5.2) for n = 0. We have thus established that collective co-
ordinate quantization is a well-suited means to obtain the energy eigenvalues
for rotational excitations on top of a degenerate ground state configuration.
This treatment is absolutely legitimate and accurate when the rotational en-
ergy is of lower order in an eventual coupling constant than the potential
energy.

5.2 Quantization of the SU(N) Rigid Top

We will now apply the collective coordinate quantization to the Skyrmion. As
in the mechanics analog above, the Skyrmion is a (ground state) configuration
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that does not respect the basic symmetries of the theory, the rotations in co-
ordinate and flavor spaces. And again, we will introduce collective coordinates
that transform the chosen configuration along the symmetries of the model.
Due to the hedgehog structure rotations in flavor and coordinate spaces are
related and collective coordinates must only be introduced for one of the two
symmetries. Stated otherwise, there is a combined flavor–coordinate trans-
formation that leaves the hedgehog unchanged, and collective coordinates for
that transformation do not appear in the Lagrangian. In the above example
that corresponds to the angle Ψ. It parameterized rotations around the z-axis,
which left the chosen ground state unchanged.

Let us first consider the SU(2) case and then make a few general state-
ments on SU(N). The original rigid rotator quantization of the two-flavor
soliton was performed by Adkins, Nappi and Witten [2]. For reviews, see [3, 4].
The ansatz analog to (5.4) is to introduce time-dependent SU(2) matrices:

A(t) = exp
(
iΦ(t)

τ3
2

)
exp

(
iΘ(t)

τ2
2

)
exp

(
iΨ(t)

τ3
2

)
. (5.12)

They parameterize the orientation of the hedgehog and approximate a time-
dependent configuration via

U(x, t) = A(t)U0(x)A†(t), (5.13)

where U0(x) is the hedgehog configuration of (4.23). Originally, the authors of
[2] used the parameterizationA(t) = a4(t)+ia(t)·τ . However, this complicates
matters because of the constraint

∑4
i=1 a

2
i (t) = 1 and evades a straightforward

generalization to SU(3).
The Lagrange function of the rigid top arises from substituting the ansatz,

(5.13), into the Skyrme model Lagrangian, Lnlσ+LSk, (4.22) and (4.26). Note
that this Lagrangian is only quadratic in the time derivatives which simplifies
matters and yields

L =
1
2
α2[F ]Ω ·Ω − Ecl[F ], (5.14)

where1

α2[F ] =
8π
3

∫ ∞

0

drr2sin2F

[
f2
π +

1
e2

(
F ′2 +

sin2F

r2

)]
(5.15)

is a moment of inertia and

Ω = −itr
(
A†(t)Ȧ(t)τ

)
(5.16)

is again an angular velocity. Numerically, one finds for the solution to (4.28)
with mπ = 0 that α2 = 51.2/(e3fπ). The scaling behavior of fπ and e shows
that α2 = O (NC). It is worth mentioning that α2 quickly decreases as mπ is

1 We adopt the notation of [5] although that is a paper on the SU(3) Skyrmion.
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switched on because the additional r2 in the integrand pronounces the long-
range behavior of the soliton. We explicitly write the Lagrange function in
terms of the Euler angles, (5.12),

L =
1
2
α2[F ]

(
Φ̇2 + Θ̇2 + Ψ̇2 + 2 cosΘΦ̇Ψ̇

)
− Ecl[F ] (5.17)

and apply the quantization rule (5.9) to obtain the Hamilton operator

H = Ecl[F ] − 1
2α2[F ]

[
1

sinΘ
∂

∂Θ
sinΘ

∂

∂Θ

+
1

sin2Θ

(
∂2

∂Φ2
− 2 cosΘ

∂2

∂Φ∂Ψ
+

∂2

∂Ψ2

)]
. (5.18)

The differential operator in H is nothing but the spin operator for the Wigner
D-functions [6]:

HDj
mm′(Φ,Θ,Ψ) =

[
Ecl[F ] +

j(j + 1)
2α2[F ]

]
Dj
mm′(Φ,Θ,Ψ) . (5.19)

So we have found the rotational spectrum of the Skyrmion. The rotational en-
ergy is proportional to 1/α2. Hence, the eventual order parameter is 1/NC and
indeed the rotational contribution to the energy is subleading which a poste-
riori justifies the collective coordinate method. We stress that the spectrum
of any other two-flavor hedgehog soliton (e.g., NJL model, or vector mesons)
is of identical structure in the two-flavor version, merely the numerical values
for Ecl and α2 vary; though their computation may become quite complicated
as will be exemplified later.

We still have to provide a physical interpretation to the quantum numbers
j, m and m′. To this end, consider

J =
∂L

∂Ω
= α2[F ]Ω

=
1

sin Θ

⎛

⎝
cosΨ
sin Ψ

0

⎞

⎠ pΦ +

⎛

⎝
−sinΨ
cosΨ

0

⎞

⎠ pΘ +

⎛

⎝
−cosΨ cotΘ
−sinΨ cotΘ

1

⎞

⎠ pΨ, (5.20)

where the time derivatives in Ω have been replaced in favor of the conjugate
momenta pΦ = ∂L

∂Φ̇
, etc. Assuming canonical commutation relations among

the Euler angles and their conjugate momenta ([Ψ, pΨ] = i, etc.) yields

[Ja, Jb] = iεabcJc. (5.21)

i.e., these are SU(2) operators and (minus) m′ is the eigenvalue of J3 [6]. The
differential operator in (5.18) is nothing but J2 with eigenvalues j(j+1). The
rotated operators

Ia = −Dab(A)Jb where Dab(A) =
1
2
tr
[
τaAτbA

†] = D
(1)
ab (Φ,Θ,Ψ) (5.22)
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similarly satisfy [Ia, Ib] = iεabcIc while [Ia, Jb] = 0. In the next section, we will
show that I and J indeed must be identified with the physical isospin and
spin operators, respectively. Before doing so, we will find the generalization
of (5.21) to SU(N).

We parameterize the N ×N unitary matrix A (with unit determinant) by
collective coordinates ξa where a = 1, . . . , N2 − 1. Then we introduce angular
velocities as

Ωa = hba(ξa)ξ̇b with hba = −2i tr
[
TaA

† ∂A
∂ξb

]
. (5.23)

The Ta are the generators in the defining representation, e.g., Ta = τa/2 and
Ta = λa/2 in SU(2) and SU(3), respectively. The hba are the Maurer–Cartan
forms. Next we consider the general Lagrangian for the collective coordinates

L =
1
2
ΩaΘabΩb − E0 . (5.24)

Here Θab is a symmetric inertia tensor and E0 a quantity that does not contain
the generalized velocities ξ̇b. Neither Θab nor E0 depend on ξa. The conjugate
momenta are

πc =
∂L

∂ξ̇c
= hcaΘabhb′bξ̇b′ . (5.25)

We furthermore define “spin” operators as

Ja =
∂L

∂Ωa
= Θabhb′bξ̇b′ =

(
h−1

)
aa′ πa′ . (5.26)

We compute the commutator of the spin operators from the canonical com-
mutators [πa, ξb] = −iδab;

[Ja, Jb] =
[(
h−1

)
aa′ πa′ ,

(
h−1

)
bb′ πb′

]

= i
(
h−1

)
aa′
(
h−1

)
bb′

[
∂hb′c
∂ξa′

− ∂ha′c
∂ξb′

]
Jc . (5.27)

Explicit commutation based on the definition, (5.23), reveals

∂hab
∂ξc

=
1
2
hcc′haa′fbc′a′ + iH(b)

ac , (5.28)

where fabc are the anti-symmetric structure constants of SU(N) and the H(b)
ac

are complicated functions of the coordinates ξa that are invariant under the
exchange a ↔ c and hence drop out when substituted into (5.27). Putting
things together yields the expected generalization of (5.21):

[Ja, Jb] = ifabcJc , (5.29)

which is nothing but the SU(N) algebra. That is, the “spin” operators are
actually SU(N) generators. Finally, we note that πaξ̇a = JaΩa so that
Hamiltonian is
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H = JaΩa − L =
1
2
Ja
(
Θ−1

)
ab
Jb + E0 . (5.30)

For further interpretation, we compute the commutator

[Ja, A] =
1
i
(
h−1

)
aa′

∂A

∂ξa′
= ATa . (5.31)

That is, the spin operators are the right generators of SU(N). They act like
multiplying with generators from the right in the defining representation.
Finally, we define left generators

La = −DabJb with Dab = 2tr
[
TaATbA

†] . (5.32)

La can be shown to satisfy [La, A] = TaA using the completeness relation,
(2.27). Obviously, the left generators act as left multiplication with Ta. They
also obey an SU(N) algebra, [La, Lb] = ifabcLc. In the context of the three-
flavor model (Chap. 6), we will redefine Ra = −Ja to compensate for the
minus sign in (5.32). The Ra are sometimes referred to as the generators of the
intrinsic SU(N) group. The matrices Dab describe the adjoint representation
and satisfy D · D† = 1, which follows again from the completeness relation
and the fact that ATaA† is traceless.

It is amusing to note that the toy model in Sect. 5.1 can also be solved
using the above-introduced SU(N) techniques. We just have to supplement
the Hamiltonian, (5.18), by the constraint J3 ≡ 0. Since [H, J3] = 0, this
constraint can be immediately imposed onto the states, yielding the se-
lection rule m′ = 0. Then the eigenfunctions are spherical harmonics as
Dj
m0(Φ,Θ,Ψ) = 4π√

j(j+1)
Yjm(Θ,Φ) and the eigenvalues are proportional to

j(j+1). Of course, the possibility to apply the SU(2) rigid rotator techniques
to that toy model merely reflects the isomorphism between SU(2) and SO(3).

5.3 Nucleon and Δ States

As indicated in the previous section, we identify indices m and m′ in (5.19)
with the isospin and spin projection quantum numbers of baryons. To this
end, we have to construct the Noether currents and charges that arise from
the infinitesimal transformations

U → U − ε ·
[
U,

τ

2

]
+ . . . and U → U − ε′ · [ix × ∂, U ] + . . . (5.33)

for isospin and coordinate rotations, respectively. Though we consider such
Noether currents in the next section, there actually is a more elegant way to
establish the desired identity. We can formally write the isospin charge as

I = −
∫

d3x tr
{
∂L(U)
∂U̇

[
U,

τ

2

]
+ h.c.

}
, (5.34)
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where h.c. stands for Hermitian conjugate and L is the Lagrangian density
under consideration, which is not necessarily constrained to be the Skyrme
model. The rigid rotator parameterization, (5.13), implies

U̇ = A

[
i
2
τ · Ω, U0

]
A† =

[
i
2
τ · Ω′, U

]
, (5.35)

where the definition of the angular velocity (5.16) has been inserted and Aτ ·
ΩA† = τ · Ω′ implies that Ωa = Ω′

bDba, cf. (5.22). Note that the only time
dependence of the field configuration stems from the collective coordinates.
We utilize the chain rule to write

I = −
∫

d3x tr

{
∂L(U)
∂U̇

∂U̇

∂Ω′ + h.c.

}

= −∂L[U ]
∂Ω′ = −D · ∂L[U ]

∂Ω
= −α2D · Ω (5.36)

from (5.14). The hedgehog structure, (4.23), implies

[ix × ∂, U ] = −
[
U,A

τ

2
A†
]

= −D† ·
[
U,

τ

2

]
, (5.37)

and therefore
J = −D† · I =

∂L[U ]
∂Ω

= α2Ω . (5.38)

The comparison with (5.20) and (5.22) shows that the “spin” operator that
appears when quantizing the rigid top is indeed the physical spin, the quantity
conserved because of rotational invariance. In addition, I is the isospin of the
soliton. As already indicated above, the indices of the WignerD- functions are
associated with the left and right generators, the latter being minus the spin
(in SU(2)). Therefore, the properly normalized baryon wave functions are (up
to phase factors)

〈A|J = I, I3, J3〉 = 〈Φ,Θ,Ψ|J = I, I3, J3〉 =
[
2J + 1
8π2

]1/2

DJ=I
I3,−J3

(Φ,Θ,Ψ)

(5.39)
in the space of the collective coordinates. To fully establish that the rigidly
rotating Skyrmion describes baryons, we still have to show that only half-
integer values are allowed for the spin quantum number J . This proof has
to wait until we generalize the rigid rotator quantization to flavor SU(3) and
incorporate the important Wess–Zumino term, (4.40), that vanishes in SU(2).

In the current treatment, the rotational excitations of the nucleon appear
as stable states even though nature tells us that they are merely (quickly
decaying) resonances. At the moment, it suffices to note that in the large-NC

limit these excitations become degenerate and thus may indeed be considered
stable states in that limit. We will discuss decay mechanisms in more detail
later.
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We would like to round up this section by discussing the computation of
the relevant matrix elements between baryon states. Once the hedgehog con-
figuration is substituted the field operators turn into functions of the collective
coordinates, A, and their time derivatives, Ȧ. These can be immediately ex-
pressed in terms of the adjoint representation Dij(A) = D

(1)
m,m′(Φ,Θ,Ψ) and

the angular velocities Ω. The matrix elements of Ω are straightforwardly re-
lated to those of the spin operator via (5.38) and are thus standard. The
matrix elements of Dij are obtained by integrating over the Euler angles,

8π2

√
(2I ′ + 1)(2I + 1)

〈J ′ = I ′, I ′3, J
′
3|D

(1)
m,m′ |J = I, I3, J3〉 = (5.40)

∫
dA
[
DJ′=I′
I′3,−J′

3
(A)

]∗
D

(1)
m,m′(A)DJ=I

I3,−J3
(A) =

8π2

2I ′ + 1
C
I′I′3
II3,1m

C
J′−J′

3
J−J3,1m′ ,

where the integration measure is
∫

dA =
∫ 2π

0 dΦ
∫ π
0 dΘ sin Θ

∫ 2π

0 dΨ and the
C’s are SU(2) Clebsch–Gordan coefficients [6].

In some cases, these matrix elements simplify by the Wigner–Eckart the-
orem. The left index of the collective coordinate matrix A behaves like an
isospinor and, due to the hedgehog structure of the soliton, the right index
like an ordinary spinor. This transfers to the transformation properties of the
adjoint representation:

Dij ∼ IiJj . (5.41)

When theD-function is sandwiched between states of equal spin (and isospin),
we have

〈J = I, I ′3, J
′
3|Dij |J = I, I3, J3〉 = c(J)〈J = I, I ′3, J

′
3|ÎiĴj |J = I, I3, J3〉 ,

(5.42)
where c(j) is the reduced matrix element. Furthermore, Î and Ĵ are SU(2)
generators that act on the I3 and J3 labels, respectively. From (5.38), we then
compute the reduced matrix element via

〈Ii〉 = 〈−DijJj〉 = −c(J)J(J + 1)〈Ii〉 . (5.43)

Hence, the diagonal piece in (5.40) simplifies to

〈J = I, I ′3, J
′
3|Dij |J = I, I3, J3〉 = −〈J = I, I ′3, J ′

3|ÎiĴj |J = I, I3, J3〉
J(J + 1)

(5.44)

for states within a given spin (isospin) representation. In particular, we have
〈N |Dai|N〉 = − 1

3 〈σiτa〉 for the nucleon, where σ and τ , respectively, denote
(twice) the spin and isospin operators in the J = I = 1

2 representation.

5.4 Nucleon Static Properties

The predictions for baryon static properties will be exhaustively discussed
in Chap. 7. Here we will mainly illuminate the use of the above-developed
description of baryons.
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The first prediction for baryons to be drawn from the spectrum, (5.19), is
the mass difference between the Δ-resonance and the nucleon2:

MΔ −MN =
1

2α2

(
15
4

− 3
4

)
=

3
2α2

. (5.45)

Comparison with the empirical mass difference (293 MeV) indicates that α ≈
5.11 GeV−1. This fixes the Skyrme term parameter to e = 4.77 when we
choose the physical value fπ = 93 MeV in the chiral limit (mπ = 0) as can
be seen from the data presented after (5.16). For any non-zero pion mass,
the simple scaling argument does not apply for the equation of motion (4.28)
and the moment of inertia, (5.15). Then these integrations must be repeated
individually. For the physical pion mass, mπ = 138 MeV, the identification of
the Δ-nucleon mass difference yields e = 4.25.

The Skyrme parameter obtained from this fit to the Δ–nucleon mass dif-
ferences then fully settles the model from which static properties of baryons
are evaluated. In order to do so, one first constructs the Noether currents
associated with the symmetry transformation (2.30). A convenient method is
to extend these global symmetries to local ones by introducing external gauge
fields (e.g., the gauge fields of the electroweak interactions) into the Skyrme
model action. The Noether currents are subsequently read off as the expres-
sions which couple linearly to these gauge fields. This procedure is especially
appropriate for the Wess–Zumino term (4.40) because this non-local term can
only be made gauge invariant by a trial and error type procedure [7, 8, 9],
see Appendix C.2 for more details. The covariant form of the SU(2) × U(1)
vector (V aμ ) and axial-vector (Aaμ) currents (a = 0, . . . , 3) is again most con-
veniently written in terms of the forms αμ = U †∂μU and βμ = U∂μU

† [10]
for NC = 3:

V aμ (Aaμ) = ∓ i
2
f2
π tr {Qa (αμ ± βμ)}

∓ i
8e2

tr {Qa ([αν , [αμ, αν ]] ± [βν , [βμ, βν ]])}

± 1
16π2

εμνρσtr {Qa (αναρασ ∓ βνβρβσ)} , (5.46)

where Qa = (1
21, τ

1

2 , . . . ,
τ3

2 ) denote the hermitian SU(2) × U(1) generators.
The combination, again for NC = 3,

Qe.m. = diag
(

2
3
,−1

3

)
=
τ3
2

+
1
6
1 = Q3 +

1
2
Qbaryon (5.47)

is of special interest because it enters the computation of the electromagnetic
properties.
2 Originally, Adkins Nappi and Witten [2] attempted to also match the absolute

masses. We will see in Sect. 8.6 that Ecl is subject to sizable quantum correc-
tions which prevent us from directly identifying the eigenvalues of (5.19) with the
physical masses.
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We substitute the collectively rotating hedgehog configuration, (5.13), into
the covariant form (5.46) and find the relevant vector current components
to be

1
3V

0
0 = 1

2b(r) ,
1
3V

0
i = 1

2b(r)εijkΩjxk ,
V a0 = − 2

3v(r)DaiΩi , V ai = v(r)
r2 εijkxjDak ,

(5.48)

with the radial functions, cf. (4.51),

b(r) = −F ′ sin
2F

2π2
and v(r) = sin2F

[
f2
π +

1
e2

(
F ′2 +

sin2F

r2

)]
. (5.49)

Primes denote derivatives with respect to the radial coordinate r. Obviously,
the integrals

∫
d3rb(r) = 1 and

∫
d3rv(r) = 3

2α
2 ensure proper normalization

of the baryon charges, since according to the quantization rules of the pre-
vious section, we have

∫
d3r

(
1
3V

0
0 + V 3

0

)
= 1

2 + I3 in agreement with (5.47).
Similarly, we find the spatial components of the (non-singlet) axial currents
to be

Aai = [a1(r)δik + a2(r)x̂ix̂k]Dak , (5.50)

with

a1(r) =
sin 2F

2r

[
f2
π +

1
e2

(
F ′2 +

sin2F

r2

)]
,

a2(r) = −a1(r) + F ′
[
f2
π +

2
e2

sin2F

r2

]
. (5.51)

Before proceeding in calculating baryon properties, it is actually interesting
to note that ∂iAai is proportional to the right-hand side of the equation of
motion (4.28) for the chiral angle in the Skyrme model. Hence PCAC, (2.55), is
equivalent to the stationary condition for the soliton profile. This equivalence
is true in any soliton model, at least at the classical level. Thus the PCAC
relation is satisfied in all soliton models classically. Yet, in soliton models,
PCAC is not necessarily a statement on the pion field operator.

In the first place, we want to compute the nucleon magnetic moments as
the matrix elements

μN = 〈NJ3 = 1
2 |
∫

d3x (x × V e.m.)3 |NJ3 = 1
2 〉 , (5.52)

where the linear combination, (5.47), is indicated. Upon substitution of the
collectively rotating hedgehog and evaluation of the matrix elements according
to the rules derived in Sect. 5.3, the magnetic moments are

μN
μn.m.

=
2π
3
MN

∫ ∞

0

drr2
[
±2

3
v(r) +

r2

2α2
b(r)

]
, (5.53)

when measured in nucleon magnetons μn.m. = e�
2MN

with MN = 939 MeV
being the physical nucleon mass. The two signs in (5.53) refer to proton and
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neutron, respectively. Numerical results are shown in Table 5.1. As discussed
above, the Skyrme constant is chosen to reproduce the Δ-nucleon mass dif-
ference. While it is nowadays common to keep the pion decay constant at
its experimental value, fπ = 93 MeV, we also include the results of the ear-
lier computation [12] that fitted fπ = 54 MeV to reproduce the nucleon mass
according to (5.19).

While the ratio of proton and neutron magnetic moments is reason-
ably well reproduced, the absolute values are significantly underestimated.
We will observe in Chap. 7 when we discuss baryon properties in more
detail that the inclusion of vector meson fields favorably improves these
predictions.

Similar to (5.52), we find the charge radii as the matrix element

〈r2N 〉 =
〈
NJ3 = 1

2

∣
∣
∣
∣

∫
d3xx2 V e.m.

0

∣
∣
∣
∣NJ3 = 1

2

〉

= 4π
∫ ∞

0

drr4
[
± 1

3α2
v(r) +

1
2
b(r)

]
. (5.54)

Numerical results are shown in Table 5.1 for two sets of model parameters
mentioned above. In contrast to the magnetic moments, we observe a pro-
nounced dependence of the results on fπ. To discuss that dependence in more
detail, it is appropriate to consider isoscalar (I = 0) and isovector (I = 1)
radii

r2I=0 = r2p + r2n and r2I=1 = r2p − r2n (5.55)

separately because they are not affected by potential cancellations between the
two terms in (5.54). Leaving the pion mass dependence aside for the moment,
dimensional considerations tell us that the radii, (5.55), should scale like 1/f2

π.
Thus, we would expect an increase by a factor four when going from parameter
set A to B in Table 5.1. This is mitigated by the additional change of the
Skyrme parameter, e, and the increase of the dimensionless ratio μπ when fπ is
lowered but the pion mass is held fixed, cf. (4.29). This effect causes the soliton
to become narrower. In total, the parameter change yields a factor two for the
squared charge radii. It is very interesting to note that r2n < 0, in agreement
with data. This is a result of the delicate cancellation in (5.54). Being so, the
predicted absolute value is actually quite model dependent. Nevertheless, all
known soliton model calculations predict negative values for r2n.

The just discussed numerical results only refer to the case with the pion
mass term included. The unphysical case mπ = 0 is somewhat troublesome
because not all of the radial integrals that appear in the calculation of nucleon
static properties converge well when the chiral angle decays with a power
law as r → ∞, cf. (4.29). The reason is that we actually have to consider
momentum-dependent form factors of the currents as, e.g., in Sect. 7.1. They
may possess cusps when the momentum approaches time-like multiples of mπ.
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Table 5.1. Predictions for nucleon static properties in the Skyrme model compared
to experimental data [11]. Two parameter sets are considered: (A: fπ = 93 MeV
e = 4.25) and (B:fπ = 54 MeV e = 4.84 [12])

A B expt.

μp 1.78 1.97 2.79

μn −1.42 −1.24 −1.91
μp

μn
−1.26 −1.59 −1.46

r2p 0.48 0.77 0.74

r2n −0.23 −0.31 −0.12

r2I=0 0.25 0.46 0.62

r2I=1 0.71 1.08 0.86

gA 0.90 0.65 1.26

These cusps become visible at zero momentum when mπ = 0. Yet, the form
factors are always well behaved, rather moments of the currents are ill-defined.

Let us next explore the axial charge, i.e., the proton matrix element 〈2A3
3〉

which is obtained from (5.51):

gA = −8π
3

∫
drr2

[
a1(r) +

1
3
a2(r)

]
. (5.56)

Experimentally, the quantity is extracted from the neutron-beta decay to-
gether with isospin invariance, as the relevant transition Hamiltonian couples
the electroweak axial current to the nucleon axial current.

We compare the Skyrme model prediction to the experimental data for gA
in Table 5.1 as well. Again, the model prediction is sensible to the parameters.
Turning again to dimensionless variables, the dependence of gA on fπ only
enters via μπ in the equation of motion (4.28); a larger fπ corresponds to a
smaller μπ and in turn to a wider chiral angle, cf. (4.29). Since gA is sensitive
to the large distance behavior of the chiral angle, the increase of gA with fπ
shown in Table 5.1 is well understood. Nevertheless, the empirical value for
gA is significantly underestimated.

Let us round up this section by a short discussion on subtleties of the axial
charge in the chiral limit, with vanishing pion mass. In that case, the axial
current is conserved and the Lorentz covariant decomposition for its nucleon
matrix element requires the Dirac structure γ5

(
γμ − 2MNqμ/q

2
)
, where qμ is

the difference of the momenta of the nucleon states. Then the non-relativistic
reduction of the matrix element that defines gA becomes

〈N(p)|2A3
3|N(p′)〉 = gA

(
δ3a −

q3qa
q2

)
(4JaI3) for q = p − p′ → 0 .

(5.57)
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The limit q → 0 is ambiguous3 and commonly [2] it is taken in a symmetric
way: 〈N(p)|2A3

3|N(p′)〉 = 2
3gA. The numerical analysis verifies that the pre-

factor (2/3) is required to render the integral, (5.56), smooth when mπ → 0.
We make use of the conservation of the axial current in the chiral limit when
evaluating the matrix element:

∫
d3r ∂i

(
x3A

3
i

)
=
∫

d3rA3
3 . (5.58)

Näıvely, one expects the left-hand side to vanish because it may be turned
into a surface integral at spatial infinity. However, (4.29) shows that the chiral
angle decays only with a power law in the chiral limit so that this surface
integral actually is non-zero. Collecting pieces, we alternatively find

gA =
8π
3
f2
πA (5.59)

for the axial charge when mπ = 0. Here we have employed the definition of A
in (4.29), expanded the radial functions ai in (5.50) to leading order in 1/r and
evaluated the spin–isospin matrix elements from (5.44). In Section (10.3), we
will argue that the long-range behavior of the pion field defines the coupling
constant gπNN seen in the one-pion-exchange contribution to the nucleon–
nucleon potential via

πa −→ − gπNN
8πMN

〈σiτa〉
xi
r3

as r −→ ∞ , (5.60)

where (twice) the nucleon spin and isospin matrix elements are indicated. For
the rigidly rotating hedgehog, we extract the asymptotic form of the pion field
from

U ∼ 1 + i
π · τ
fπ

∼= 1 + iF (r)x̂iDaiτ
a . (5.61)

The nucleon matrix elements, (5.44), and again the large r behavior of the
chiral angle, (4.29), identify gπNN

8πMN
= 1

3fπA. Eliminating A then yields

gA =
fπgπNN
MN

. (5.62)

This is the celebrated Goldberger–Treimann relation (GTR) between the nu-
cleon axial charge that is measured in weak interactions and the pion–nucleon
coupling constant that is a strong interaction property. Commonly, the GTR
is obtained from sandwiching the PCAC relation (2.55) as an operator equa-
tion between nucleon states. While the left-hand side of that matrix element
gives the axial charge of the nucleon, the LSZ reduction formalism can be

3 For mπ �= 0, the denominator is q2 +m2
π and the limit can be taken straightfor-

wardly.
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utilized to relate the right-hand side to the pion–nucleon form factor whose
zero momentum limit defines the coupling constant gπNN .4

In the Skyrme model, the situation changes considerably away from the
chiral limit. Then the axial current is not conserved and asymptotically the
chiral angle decays exponentially. Thus, (5.58) turns into

0 =
∫

d3r ∂i
(
x3A

3
i

)
=
∫

d3rA3
3 +

∫
d3r x3f

2
πm

2
π sinF x̂kD3k . (5.63)

It is tempting to use the PCAC relation (2.55), identify the pion field as πa =
fπ sinF x̂kDak and compute gπNN as the nucleon matrix element thereof. By
pure construction, that procedure renders the Goldberger–Treimann relation,
(5.62). However, some care needs to be taken with this definition of the pion–
nucleon coupling constant because it remains unclear how it is related to the
one-pion-exchange contribution in the nucleon–nucleon potential or even pion–
nucleon scattering; after all this pion field is confined in space and thus cannot
correspond to an asymptotic state. Generalizations of this definition of gπNN
to coupling constants for baryon resonances (e.g., gπNΔ ∼ 2MN

fπ
〈N |A3

3|Δ〉)
to compute its decay width seem even more questionable. In fact, in Sect. 9.3,
we will discuss a case where this approach fails.

5.5 Quantization in Vector Meson Models

A short note on the analogous computation in vector meson models is in order
because there is a major technical difference. With time-dependent rotations,
the field equations for components that vanish on the classical soliton level
are augmented by source terms proportional to the angular velocities. This
induces additional radial functions for these components. Essentially, the time
components of the ρ and the spatial components of the ω meson fields are
affected:

ρ0,a =
1
2g
A(t) [ξ1(r)Ωa + ξ2(r)(x̂ ·Ω)x̂a]A†(t) , ωi =

φ(r)
2g

εijkΩj x̂k . (5.64)

These additional profile functions are determined from a variational principle
to the moment of inertia, α2 [13, 14, 15]. In the case of the model generalized to
U(2), a two-flavor psedouscalar–isoscalar field of the from ηT (r) = 1

fπ
η(r)r̂ ·Ω

is also induced. (Section 7.4 contains a comprehensive discussion of η fields
in chiral models.) To be precise, the moment of inertia in the vector meson
model described in Sect. 4.7 reads

4 Strictly speaking the GTR is valid only at zero momentum transfer and smooth-
ness is assumed to extrapolate to the physical point.
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α2 =
8π
3

∫
dr

{

f2
πr

2sin2F − 4
g2

(φ′2 + 2
φ2

r2
+m2

ρφ
2)

+
m2
ρ

2g2
r2
[
(ξ1 + ξ2)2 + 2(ξ1 − 1 + cosF )2

]

+
1

2g2

[
(3ξ′21 + 2ξ′1ξ

′
2 + ξ′22 )r2 + 2(G2 + 2G+ 2)ξ22

+ 4G2(ξ21 + ξ1ξ2 − 2ξ1 − ξ2 + 1)
]
+

4γ1

g
φF ′sin2F

+
4γ3

g
φF ′ [(G− ξ1)(1 − cosF ) + (1 − cosF )2 −Gξ1

]

+
2γ2

g

{
φ′ sinF (G− ξ1 + 2 − 2 cosF ) + φsinF (ξ′1 −G′)

+ φF ′ [2 + 2sin2F + (ξ1 −G− 2)cosF − 2(ξ1 + ξ2)
] }

− 1
2
[
η′2r2 + 2η2 +m2

ηr
2η2
]
+
γ2g

2fπ
[η(φω′ − ωφ′) − η′φω]

− γ1

3gfπ

[
η′(ξ1 + ξ2)sin2F + 2ηF ′(G+ ξ1)sinF

]

− 3γ3

gfπ
η′(G+ 1 − cosF )2(ξ1 + ξ2)

− γ2

gfπ

{
η′
[
(G+ ξ1)G+ (ξ1 + ξ2)[(1 − cosF )2 − 2GcosF ]

]

+ η(Gξ′1 −G′ξ1)}
}

. (5.65)

In future, we will refrain from displaying such lengthy formulas and rather
refer to the literature. In any event, it should be obvious that the inclusion of
vector mesons significantly complicates matters. Of course, these additional
fields must also be taken into account when computing the analog of the radial
functions in (5.48), etc., in vector meson models [13, 14, 15]. Otherwise, the
charges, etc., are not properly normalized.

There is, however, a significant effect of the vector meson fields. With-
out their presence, there is no term that is only linear in the isoscalar
pseudoscalar field η, as evident from (5.65). That is, without vector mesons
this component does not get excited. This is one of the features that make
qualitative differences to the Skyrme model. Although the effect of the in-
duced η field is negligibly small for most quantities, there are special ones
that vanish without the η and in such cases it plays an important role,
cf. Sects. 7.4 and 7.6.

Once the moment of inertia, α2, is computed, the spectrum is again de-
termined from (5.19). In order to obtain α2 ≈ 5 GeV−1 as deduced from the
Δ-nucleon mass difference, a value of κ = γ3/γ2 ≈ 1 is needed for the so far
undetermined parameter (discussed after (4.66)). The corresponding piece in
the Lagrangian is repulsive, and thus too small a value (in particular a nega-
tive one) yields too small a soliton extension and in turn too big a Δ-nucleon
mass difference [14].
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5.6 Quantization in Chiral Quark Models

Let us also briefly discuss the method of collective coordinate quantization
in chiral quark models. Actually, the quantization prescription is the same
as in the mesonic models, i.e., the spectrum is given by (5.19). However,
the computation of the moment of inertia, α2, is again significantly more
complicated than in the Skyrme model, (5.15). Also, in chiral quark models,
the connection to the famous cranking procedure [16] is more obvious and
so justifies the notion of cranking the hedgehog for the collective coordinate
approach.

Starting point is the observation that the rotation of the hedgehog, (5.13),
can be phrased as a vector transformation of the quark fields. Then the Dirac
operator becomes

iβD/ = A(t)
{

i∂t − h− 1
2
τ · Ω

}
A†(t) . (5.66)

Here h is the single-particle Dirac–Hamiltonian of (3.23) if only pseudoscalar
fields are considered. The computation proceeds by expanding the bosonized
action, (2.14), in powers of Ω to quadratic order. The coefficient of that term
is then identified as the moment of inertia. As in the case of the classical
energy, the action separates into valence quark and vacuum pieces. The former
is analyzed by treating the extended Dirac equation for the valence quark
state in stationary perturbation theory. The corresponding contribution to
the moment of inertia tensor is

Θ(V)
ab =

NC

2

∑

μ�=V

〈V|τa|μ〉〈μ|τb|V〉
εμ − εV

, (5.67)

where μ refers to the eigenstates of h and V denotes the (strongly bound)
valence level. This expression illustrates the cranking-type structure of the
collective rotations [16]. Similarly, we find the first-order rotational correction
to the valence quark wave function

Ψ(rot)
V (r , t) = e−iεVtA(t)

⎧
⎨

⎩
ΨV(r ) +

1
2

∑

μ�=V

Ψμ(r )
〈μ|τ · Ω|V〉
εV − εμ

⎫
⎬

⎭
, (5.68)

with Ψμ(r ) being the eigenfunctions of h in (3.23).
The expansion of the vacuum part complicates the computation of the in-

ertia parameter. Since regularization is mandatory and we employ the proper
time prescription, the detour over Euclidean space is unavoidable. In Eu-
clidean space hrot = 1

2τ · Ω is an anti-hermitian quantity since it is linear in
the time derivative. The real part of the regularized action is5

5 We do not discuss the imaginary part here. It does not contribute in the two-
flavor case. This is different when collective coordinates are introduced for flavor
SU(3) [17].
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AR = −1
2

∫ ∞

1/Λ2

ds
s

Tr exp
{
−s
[
−∂2

τ + h2 + [h, hrot] − h2
rot

]}
. (5.69)

This expression is analyzed using the general formula, (B.23), for an expan-
sion up to quadratic order for operator-valued objects. Since the perturbation
is taken to be static, the temporal part of the functional trace is straight-
forwardly converted into Gaußian-type integrals as in (3.12). The remainder
of the trace is evaluated using the eigenstates, |μ〉, of the Dirac Hamiltonian
in the background of the chiral soliton, (3.2). Having obtained the expanded
Euclidean action, the coefficients of ΩaΩb are extracted after continuing back
to Minkowski space. This yields the vacuum contribution to the moment of
inertia tensor

Θ(0)
ab =

NC

2

∑

μν

fΛ(εμ, εν)〈μ|τa|ν〉〈ν|τb|μ〉 . (5.70)

The cut-off function

fΛ(εμ, εν) =
Λ√
π

e−(εμ/Λ)2 − e−(εν/Λ)2

ε2ν − ε2μ

+
sign(εμ)erfc

(∣∣ εμ
Λ

∣
∣)− sign(εν)erfc

(∣∣ εν
Λ

∣
∣)

2(εμ − εν)
(5.71)

vanishes in the case εμ = εν [18]. When regularization is removed

lim
Λ→∞

fΛ(εμ, εν) =
sign(εμ) − sign(εν)

2 (εμ − εν)
, (5.72)

the typical cranking structure of particle–hole excitations becomes obvious.
Because of flavor SU(2) symmetry, the moment of inertia tensor is propor-
tional to the unit matrix. Therefore, the moment of inertia that enters the
Δ-nucleon mass difference, (5.45), becomes

α2 =
1
2

[1 + sign(εV)] Θ(V)
33 + Θ(0)

33 . (5.73)

The first coefficient measures whether or not the baryon number is carried
by the polarized vacuum, cf. Sect. 3.1. As for the classical energy, (3.16),
the right-hand side of (5.73) is smooth as εV changes sign. Again, the value
α2 ≈ 5 GeV−1 is often used to fix the remaining model parameter (after fitting
meson observables). In Sect. 3.3, we have discussed that this may be phrased
in terms of the constituent quark mass m. For the model of only pseudoscalar
fields (Sect. 3.3.1), one finds m ≈ 400 MeV.

This has just been a sketch of the computation of the moment of inertia
in chiral quark soliton models. For a more detailed discussion, we recommend
to consult the original references [18, 19] as well as the reviews on the (NJL)
chiral quark soliton model [20, 21].
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6

Soliton Quantization in Flavor SU(3)

The extension to three flavors is essential to establish the fermionic char-
acter of the Skyrmion. As explained in Chap. 5, the NC dependences are
almost trivial in two-flavor soliton models. They merely effect the scaling of
constants in the effective meson Lagrangian while the quantization rules for
spin and isospin are not affected. The eigenstates of the collective coordinate
Hamiltonian, (5.18), are members of SU(2) representations that are com-
pletely determined by the prescribed values of spin and isospin, (5.39). This
will turn out to be very different when we extend the model such that it is
based on a three-flavor effective meson Lagrangian. We will see that the al-
lowed SU(3) representations depend on the value of NC. As is to be expected
this results from the Wess–Zumino term, the representative for the QCD ax-
ial anomaly in the effective meson theory. Another major difference to the
two-flavor version is the fact that SU(3) is not an exact symmetry in nature.1

This feature must also be incorporated when generating baryon states from
the soliton.

6.1 Baryon States in the Non-relativistic Quark Model

We will first briefly review the non-relativistic quark model for three flavors
to establish the role of SU(3) representations. In the non-relativistic quark
model, baryons are built out of three quarks that are bound by a potential.
The details of that potential are not important here. It suffices to know that for
the low-lying baryons the three quarks are in the same spatial wave function
φ(x) and that the product wave function is completely symmetric in spin and
flavor. This is due to the fact that the overall anti-symmetry solely results
from the permutation properties of the color wave function. For the spin–flavor
component of the product of three quarks, we consider the Clebsch–Gordan

1 Though also isospin is not exact, we may ignore isospin breaking effects at the
scale of strong interactions.

H. Weigel: Soliton Quantization in Flavor SU(3), Lect. Notes Phys. 743, 85–112 (2008)
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n p

Σ− Σ0 Σ+Λ

Ξ− Ξ0

0

1

1

Y

I3

Δ− Δ0 Δ+ Δ++

Σ∗− Σ∗0 Σ∗+

Ξ− Ξ0

Ω

0

1

1

Y

I3

Fig. 6.1. The low-lying baryons in the octet (left) and decuplet (right) represen-
tations of flavor SU(3). These baryons are characterized by their isospin projection
(I3) and hypercharge (Y ) quantum numbers. The Y = I3 = 0 state in the octet is
twofold degenerate

expansion (in the language of Young tableaux)

(6.1)

which is valid for both spin SU(2) and flavor SU(3). In the case of SU(2), the

totally anti-symmetric combination is not available. Therefore, the possible
product wave functions that are totally symmetric in the spin and flavor
quantum numbers are

spin

⊗

flavor

and

spin

⊗

flavor

. (6.2)

The states in the first product carry spin s = 1
2 because in SU(2),

i.e., these states belong to the fundamental doublet. The states in the second
product form an SU(2) quartet with s = 3

2 . The flavor representations are
octet and decuplet on the left- and right-hand sides, respectively. The flavor
content of these multiplets is shown in Fig. 6.1 where the states are ordered
according to their hypercharge and isospin projection quantum numbers, i.e.,
the eigenvalues of the Cartan operators of SU(3).

6.2 Quantization of the Soliton in the Flavor
Symmetric Case

In this section, we will discuss the quantization of the Skyrmion in the sim-
plified case of zero flavor symmetry breaking. This comprises the rigid rotator
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approach to the chiral soliton in flavor SU(3). Compared to the quantization
in the two-flavor reduction, there are already two major differences. The first
one is the emergence of the Wess–Zumino term, cf. Sect. 4.5. It no longer
vanishes because in SU(3) sufficiently many linear independent generators
are present. We will in particular see that it enforces to quantize the soliton
a spin 1

2 object, at least for odd NC. The second difference is actually obvi-
ous. We still want to quantize the modes about the hedgehog configuration,
(4.23). However, there are several SU(2) sub-manifolds in SU(3) that could
be chosen to embed the hedgehog. Eventually, we want to quantize about an
extremal point of the action when flavor symmetry breaking is included. Any
embedding outside the isospin sub-group will change the classical energy by a
positive amount proportional to the mass difference between the strange and
non-strange quark masses. In the effective Lagrangian, that mass difference is
represented by the one between the kaon and the pion, cf. (2.24).

The initial configuration in the three-flavor model is

UH(x ) =

⎛

⎝
exp [ix̂ · τ F (r)] 0

0

0 0 1

⎞

⎠ , (6.3)

where, for the Skyrme model case, F (r) is again the solution to the equation
of motion (4.28). We introduce collective coordinates for the zero modes in
the SU(3) symmetric model

U(x , t) = A(t)UH(x)A†(t) (6.4)

to parameterize time-dependent configurations as in (5.13). Here the soliton
rotates without deformation (i.e., rigidly) in flavor space. Therefore treatments
based on (6.4) are commonly summarized as the rigid rotator approach (RRA).
When we substitute this ansatz into the sum

∫
d4x [Lnlσ + LSk] + ΓWZ, we

obtain the Lagrange function for the collective coordinates

L(A,Ωa) = −Ecl +
1
2
α2

3∑

i=1

Ω2
i +

1
2
β2

7∑

α=4

Ω2
α − NCB

2
√

3
Ω8 , (6.5)

where
i
2

8∑

a=1

Ωaλa = A†(t)
dA(t)

dt
(6.6)

defines the SU(3) angular velocities, cf. (5.16). The classical energy, Ecl and
the moment of inertia associated with the first three rotations, α2, are the
same as in SU(2), cf. (4.27) and (5.15), respectively. Again, the α2 term arises
because the Skyrmion breaks rotational invariance and the hedgehog structure
allows to express spatial rotations as flavor transformations. Similarly, the
third term is caused by the Skyrmion breaking the SU(3) symmetry. The
corresponding moment of inertia is again a functional of the chiral angle:
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β2 = π

∫
dr r2 sin2F

2

[
4f2
π +

1
e2

(
F ′2 +

2
r2

sin2F

)]
. (6.7)

Induced kaon fields, required by partial conservation of the axial current [1],
are not explicitly shown. Typical model results for this inertia parameter are
about 4 GeV−1. The last term in (6.5) is less easily understood. Note that λ8

commutes with the soliton configuration (6.3). Hence one does not expect Ω8

to appear at all in the collective coordinate Lagrangian. And indeed, there is
no Ω2

8 contribution from either the non-linear σ or the Skyrme Lagrangians.
However, this commutator argument applies only to local pieces of the action.
The Wess–Zumino term is non-local and yields the last term in (6.5). Since
the Wess–Zumino term has at most one time derivative, it is obvious that its
contribution to the collective coordinate Lagrangian is linear in the angular
velocities. This piece in the Lagrangian can easily be worked out from (C.27)
in Appendix C with V ≡ A(t). We stress that exactly the same term arises
in chiral quark soliton models (Chap. 3) from AI (2.16) [2, 3]. This is not
surprising, after all ΓWZ is included to mock up AI .

The discussion and results of Sect. 5.2 are valid for any dimension of the
special unitary group. To quantize the system, (6.5), we may hence simply
identify the (intrinsic) SU(3) generators

Ra = − ∂L

∂Ωa
=

⎧
⎪⎨

⎪⎩

−α2Ωa = −Ja, a = 1, 2, 3
−β2Ωa, a = 4, .., 7
NCB
2
√

3
, a = 8

(6.8)

and impose the commutation relations2

[Ra, Rb] = −ifabcRc , (6.9)

where fabc are the SU(3) structure constants. The fact that the first three
generators are identified with the spin operator is a mere consequence of the
hedgehog structure that identifies spin and isospin rotations. We easily find
the Hamiltonian of (6.5) from the Legendre transformation eq. (5.30)

H = Ecl +
1

2α2
J 2 +

1
2β2

7∑

α=4

R2
α

= Ecl +
1
2

(
1
α2

− 1
β2

)
J 2 +

1
2β2

C2[SU(3)] − N2
CB

2

24β2
, (6.10)

where C2[SU(2)] =
∑8

a=1R
2
a is the quadratic Casimir operator of SU(3). The

main task is now to find the eigenstates of (6.10) subject to the constraint
R8 = NCB

2
√

3
. In (5.20), the Euler angle representation of the SU(2) generators

is given. Of course, an analog for Ra in terms of the eight SU(3) Euler exists

2 Note the different phase convention.



6.2 Quantization of the Soliton in the Flavor Symmetric Case 89

as well. The detailed expressions are listed in Appendix D. Techniques based
on expressing H in terms of the Euler angles will become more important
when incorporating flavor symmetry breaking.

In the absence of flavor symmetry breaking, the diagonalization problem is
simple because members of definite SU(3) representations are also eigenstates
of the SU(3) Casimir operators. It is important to recall that we have to
consider two sets of multiplets, one for the right generators Ra and one for
the left generators La that are related via (5.32). Since

∑8
a=1R

2
a =

∑8
a=1 L

2
a,

these two multiplets have identical sets of p and q values that characterize
SU(3) multiplets. Thus, in similarity to the quark model wave function which
can be viewed as a product of SU(2)-spin and SU(3)-flavor multiplets, the
soliton quantization produces states that are represented by a product of
two identical SU(3) representations. The states in SU(3) representations are
labeled by SU(2) and U(1) quantum numbers. In the case of flavor, this is
isospin and flavor, cf. Fig. 6.1. In the case of the SU(3) representation for the
right generators, the SU(2) quantum number describes spin since Ri = −Ji
for i = 1, 2, 3. The corresponding U(1) label is the right hypercharge that is
fixed by the constraint to be YR = 2√

3
R8 = NCB

3 . The constraint actually
commutes with the Hamiltonian for the collective coordinates. It may thus be
considered as a condition for the allowed multiplets. The energy eigenvalue of
states within a given multiplet is then straightforwardly found to be3

E = Ecl +
1
2

(
1
α2

− 1
β2

)
j(j + 1) +

1
6β2

(
p2 + q2 + pq + 3p+ 3q

)
− N2

CB
2

24β2
,

(6.11)
where j is the spin eigenvalue of the considered state. At the moment, we are
not really interested in the resulting spectrum for which the so far omitted
flavor symmetry breaking is an important ingredient.

We will now work out the allowed multiplets in detail. To enlighten the
following discussion a bit, the state content of a typical (higher dimensional)
SU(3) multiplet is displayed in Fig. 6.2. In terms of the two integers p and q,
the hypercharge of the states at the top of an SU(3) multiplet is Y (top) = p+2q

3 .
The hypercharge of any other state in that multiplet differs by an integer
t ≤ p+ q. Hence, the constraint implies

p+ 2q = NCB + 3t (6.12)

for the allowed multiplets. Actually, the integer t plays the role of Biedenharn’s
triality [6].

The states with a fixed hypercharge form a multiplet concerning the SU(2)
subgroup. Let us denote the largest SU(2) eigenvalue within such a multiplet
by mmax. For the states at the top of the SU(3) multiplet, we havem(top)

max = p
2 .

Thus, this maximal quantum number for the other states in the multiplet is
(determined from the states farthest to the right in Fig. 6.2)
3 For details on SU(3) representation theory, we refer to the textbooks [4, 5].
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Y(R)

m

p
2

( ), p + 2q
3

Fig. 6.2. A typical higher dimensional SU(3) multiplet with p = 5 and q = 2.
The dimension of this multiplet is D = 1

2
(p+ 1) (q + 1) (p+ q + 2) = 81. Multiply

occupied states are indicated by circles. The arrow indicates the SU(2) submultiplet
that satisfies the constraint YR = 1 and carries t = 2, cf. (6.12). Also the state that
possesses the largest m and Y quantum numbers is made explicit at the top right

mmax =

{
p
2 + t

2 t ≤ q
p
2 − t

2 + q t ≥ q .
(6.13)

Eliminating the label p via the constraint, (6.12) yields

mmax =
NCB

2
+

{
2t− q t ≤ q

t t ≥ q .
(6.14)

This implies that mmax is half-integer valued whenever the product NCB
is odd, regardless of the considered multiplet and the value of t. This is an
important result asmmax being half-integer causes the eigenvalues for J3 to be
half-integer as well. Hence, for the particularly interesting case of B = 1, the
quantized Skyrmion describes fermions for NC odd and bosons for NC even,
just as in the quark model. Recalling that the constraint emerged from the
Wess–Zumino term, we see that reproducing the anomaly structure of QCD
induces the proper statistics upon the Skyrmion.

It is furthermore important to note that mmax is just the largest allowed
SU(2) quantum number. States in the interior of an SU(3) multiplet may be
degenerate and are distinguished by the highest weight that they carry with
respect to the SU(2) subgroup. For example, in the 81-dimensional represen-
tation shown in Fig. 6.2, the allowed states are up to threefold occupied and
spin eigenvalues of J = 7

2 , 5
2 and 3

2 emerge. The latter may eventually mix
with Δ-type baryons when flavor symmetry is abandoned.

The starting picture to quantize the Skyrmion is obviously quite differ-
ent from the quark model, where the wave functions are products of SUS(2)
and SUF(3) representations for spin and flavor, respectively. The Skyrmion
quantization is that of a product of two identical SU(3) representations, one
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of which contains the spin degrees of freedom. At the end, the constraint
from the Wess–Zumino terms takes care that in this representation only those
states are allowed that have the same spin properties as the baryon states
in the SU(6) constituent quark model when decomposed with respect to the
SUS(2) × SUF(3) content [7]. Nevertheless, matrix elements turn out equiva-
lent in the two models as NC → ∞ [8].

We may actually understand the important result that the constraint leads
to half-integer spin without going into the details of group theory. There is a
simple analogy in particle phenomenology which, after all, has already solved
SU(3) representation theory for us for the physical case of B = 1 and NC = 3.
Similar to the Gell–Mann-Nishijima relation for the electric charge, we may
define a right charge operator

QR = R3 +
1
2
YR = −J3 +

1
2
YR . (6.15)

Its eigenvalues are completely determined by the SU(3) algebra. Fortunately,
we do not have to calculate them because the quark model tells us that pos-
sible eigenvalues are QR = 0,± 1

3 ,±
2
3 ,±1,± 4

3 , . . .; no half–integer charge is
allowed. For YR = 1, this eigenvalue relation, (6.15), can only be consistently
accommodated with J3 being half-integer. This argument can be generalized
to arbitrary (odd) NC. The electric charges of hadrons that are built from such
quarks are Q = ne/NC, where n is an integer and e the elementary charge
(cf. footnote 1 in Appendix C). The analogy with the quark model also teaches
us to write QR = nR/NC = −J3+(BR+SR)/2 = m/NC, where BR and SR are
right baryon and strangeness numbers, respectively. While SR is integer, we
eliminate BR in favor of the constraint in the formNCB = 3YR = NCBR+3SR

so that the condition

nR = NC

(
B

2
− J3

)
+
SR

2
(NC − 3) (6.16)

demands half-integer J3 when B is odd because nR −SR(NC − 3)/2 is integer
for odd NC regardless of what integer value SR assumes.

In Sect. 5.2, we have already seen that the left generators are the isospin
charges in the two-flavor model, cf. (5.36). This generalizes to the flavor
charges in SU(3) which we label by the eight-dimensional vector Q:

Q = −D† · ∂L
∂Ω

= −D†R = L . (6.17)

As was to be expected, this identity shows that the multiplets associated with
the left SU(3) are flavor multiplets alike in the quark model. The interesting
feature is that the allowed multiplets are selected by the Wess–Zumino term.

We will say more about the resulting spectrum at arbitraryNC in Sect. 9.4.
Let us next discuss that in more detail for the physically interesting case of
NC = 3 and B = 1. For t = 0, the constraint, (6.12), becomes p+ 2q = 3,
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Y

I3

Ξ5

Σ

N

Θ+

Fig. 6.3. The flavor content of the anti-decuplet

which can be accommodated by (p, q) = (1, 1) and (p, q) = (3, 0). The former
is the octet (8) and the latter is the decuplet (10) whose flavor (left) states
are depicted in Fig. 6.1. Concerning the right quantum numbers, (6.13) im-
mediately shows that the octet may only contain J = 1

2 states. These are to
be identified with nucleon and the ordinary hyperons. In general, mmax = 3

2
would allow for J = 3

2 and J = 1
2 states in the decuplet. Since the decuplet is

a triangle representation, there is no degeneracy and the YR = 1 submultiplet
only has J = 3

2 states. These are to be identified with the Δ-type resonances,
including the excited hyperons Σ∗, Ξ∗ and Ω. As long as we do not con-
sider any flavor symmetry breaking, the states within a given multiplet are
predicted to possess identical masses, as can be easily deduced from (6.11).

The lowest dimensional multiplet with t = 1 is the anti-decuplet. It will
be of particular relevance when discussing exotic states in Chap. 9. It is the
complex conjugate of the decuplet and has (p, q) = (0, 3). Hence, we expect
the states in that multiplet to lie roughly 3

2β2 ≈ 500 MeV above the nu-

cleon [6, 9, 10]. The corresponding Young–Tableaux is and the flavor
content is shown in Fig. 6.3. The states on the top (Θ+) and the bottom
(Ξ5) have strangeness S = +1 and S = −2 and isospin I = 0 and I = 3

2 ,
respectively. These states cannot be built from three quarks; rather these
quantum numbers require configurations with four quarks and an anti-quark.
This motivates the notion of pentaquarks. The anti-decuplet also contains a
nucleon-type state (N ′) as well as Σ-type states. These are sometimes referred
to as crypto-exotic pentaquarks. Once flavor symmetry breaking is switched
on, these states mix with the nucleon and Σ from the octet. The SU(2) sub-
multiplet of the anti-decuplet with Y = 1 is a doublet. Turning to the right
multiplet YR = 1, thus implies that the anti-decuplet states have J = 1

2 . Of
course, all flavor rotational excitations have the same parity as the nucleon,
which by convention is +1.

6.3 Flavor Symmetry Breaking

So far, we have considered the unrealistic flavor symmetric case. Though that
has been extremely fruitful to understand the quantization of the chiral soliton
in flavor SU(3), we may not expect to reproduce empirical data reliably. After
all, nucleons and hyperons are not degenerate.
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To construct the model Lagrangian, we have to understand the chiral
transformation properties of a general flavor symmetry breaking term Lsb in
the effective meson Lagrangian. Upon bosonization of the quark flavor inter-
action such terms arise from the mass term of QCD, which has the same chiral
properties as the mass term in the NJL model (2.8). We may characterize its
bosonization by

Nf∑

i,j=1

(m̂0)ij (q̄RjqLi + q̄LjqRi) −→
Nf∑

i,j=1

(m̂0)ij
(
M +M †)

ij
, (6.18)

where m̂0 is the (diagonal) current quark mass matrix and M is the meson
field that arises after bosonization (2.28). The bosonization of the interaction
terms will alter the chiral symmetric pieces, and also higher order deriva-
tive contributions will eventually emerge in the effective meson Lagrangian.
Though that complicates matters, the above prescription teaches us two im-
portant features about the structure of the flavor symmetry breaking terms
in the chiral Lagrangian:

• Flavor symmetry breaking terms will involve powers of the current quark
mass matrix. Under the assumption of isospin symmetry (m0,u = m0,d),
the current quark mass matrix can be parameterized as

m̂0 =
1
3

[

2m0,u

(

1 +
√

3
2
λ8

)

+m0,s

(
1 −

√
3λ8

)]

(6.19)

in the three-flavor case. Since m0,u � m0,s, the second term dominates.
• To linear order in m̂0, we may generally write

Lsb =
∑

i

citr {Fi (M,∂μM) + h.c.} +
∑

i

c̃itr
{
λ8F̃i (M,∂μM) + h.c.

}
,

(6.20)
where h.c. stands for Hermitian conjugate. The ci and c̃i arise from
bosonization but may in practice be determined form experimental data.
They vanish in the flavor symmetric limit. The important issue is that the
functions Fi and F̃i unambiguously transform under global chiral trans-
formations, (2.30),

Fi
(
LMR†, ∂μ(LMR†)

)
= LFi (M,∂μM)R† (6.21)

and similarly for F̃i. One way of arguing is that under the assumption
m̂0 → Rm̂0L

†, all terms transform like singlets.

In the Skyrme model, matters simplify a bit since we only have pseu-
doscalar fields M ∝ fπU . Also, we wish to consider a minimal set of flavor
symmetry breaking terms. We merely want Lsb to describe the differences be-
tween the kaon and pion masses as well as the associated decay constants. To
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this end, it is sufficient to only consider contributions linear in flavor symmetry
breaking:

Lsb =
f2
πm

2
π + 2f2

Km
2
K

12
tr
[
U + U † − 2

]
+
√

3
f2
πm

2
π − f2

Km
2
K

6
tr
[
λ8

(
U + U †)]

+
f2
K − f2

π

12
tr
[
(1 −

√
3λ8)

(
U∂μU

†∂μU + U †∂μU∂μU †)
]
. (6.22)

In total, we therefore consider the effective meson action

Γ =
∫

d4x {Lnlσ + LSk + Lsb} + ΓWZ, (6.23)

with the various pieces listed in (4.23), (4.26), (6.22) and (4.40) as a realistic
starting point for a soliton description of baryons in flavor SU(3). We expand
the chiral field in terms of pseudoscalar modes, normalize them properly and
extract the axial current to easily verify that fπ and fK are the respective
decay constants [11].

At this point only Lsb is new. Substituting the rigidly rotating chiral soli-
ton, (6.4) adds

Lsb = −1
2
γ[F ] (1 −D88(A)) (6.24)

to the Lagrange function for the collective coordinates, (6.5). Since flavor
symmetry is explicitly broken, the collective coordinates appear explicitly.
In (6.24), this appearance is parameterized by the adjoint representation,
cf. (5.32) with Ta = λa/2. The constant of proportionality is a functional
of the chiral angle and contains the information about different masses and
decay constants of the pseudoscalar mesons:

γ[F ] =
4
3

∫
d3r

{
(
m2
Kf

2
K −m2

πf
2
π

)
(1 − cosF )

+
1
2
(
f2
K − f2

π

)
cosF

(
F ′2 + 2

sin2F

r2

)}

. (6.25)

Note that we have omitted contributions from Lsb that are quadratic in the
angular velocities. Those would emerge from the term proportional to the
(f2
K − f2

π). As we will see later, the direct influence of that term is minor.
Neither did we make explicit contribution from Lsb to the functionals Ecl, α2

and β2. Actual computations take this into account. It is straightforward to
include Lsb in the Legendre transformation to get the Hamiltonian for the
collective coordinates with symmetry breaking effects included,

H(A,Ra) = Ecl+
1
2

[
1
α2

− 1
β2

]
J2+

1
2β2

C2(SU(3))− 3
8β2

+
1
2
γ (1 −D88(A)) .

(6.26)
We still have to recognize the constraint on YR. Fortunately, it commutes with
H(A,Ra) even in the presence of symmetry breaking. So we may apply it
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solely onto the states. Since [Ra, D88] �= 0 as well as
[∑8

a=1R
2
a, D88

]
�= 0, it is

obvious that definite SU(3) representations will no longer serve to diagonalize
this Hamiltonian. In a first attempt, one might want to treat the Hamiltonian,
(6.26), in perturbation theory. Noting that the symmetry breaking part can be
written in terms of an SU(3) D-function, D88 = D8

000,000, the required matrix
elements are given in terms of SU(3) Clebsch–Gordan coefficients [12]:

(−1)J+J′−J3−J′
3〈μ′;Y ′, I ′, I ′3;Y

′
R, J

′, J ′
3|D88(A)|μ;Y, I, I3;YR, J, J3〉

=

√
dimμ
dimμ′

∑

γ

(
8 μ μ′

γ

000 Y II3 Y ′, I ′, I ′3

)(
8 μ μ′

γ

000 YRJ − J3 Y
′
R, J

′,−J ′
3

)
. (6.27)

The sum (over γ) occurs because the Clebsch–Gordan expansion of the
product 8 ⊗ μ may contain the SU(3) representation μ′ more than once,
e.g.,

8⊗ 8 = 1⊕ 81 ⊕ 82 ⊕ 10⊕ 10⊕ 27 . (6.28)

Turning to the interesting value YR = 1, the first-order modification of the
energy eigenvalues for the octet baryons due to the flavor symmetry breaking
is readily evaluated to be [13]

2β2ΔMN = −1
5
ω2 ; 2β2ΔMΛ = − 1

15
ω2 ;

2β2ΔMΣ =
1
15
ω2 ; 2β2ΔMΞ =

2
15
ω2 , (6.29)

where the effective symmetry breaking parameter ω2 = 3
2γβ

2 (ratio of symme-
try breaking potential to flavor rotation energy) has been introduced [14]. In
a similar fashion the change of the baryon wave functions may be obtained.
This results in deviations from pure octet (or decuplet) states. Of course,
the admixture may only contain contributions from states that have identical
identical spin–flavor quantum numbers and are members of representations
that satisfy the constraint, (6.12). For example, to O

(
ω2
)
, the octet nucleon

state is perturbed by nucleon-type states in the anti-decuplet, cf. Fig. 6.3, and
the 27-plet [15]:

|N〉 = |N,8〉 + 0.0497ω2|N,10〉 + 0.0327ω2|N,27〉 + · · · (6.30)

We will later see that calculations up to only first order are generally not suf-
ficient for convergence. The obvious way to preceed is the inclusion of higher
order terms. Numerically, it turns our that for physically relevant values of
ω2, convergence appears at third order. Here it is worth to mention that in
the perturbation series for the octet baryons up to third order in ω, only
the two representations 10 and 27 occur [15]. Similarly, one can adopt all
states in representations that are allowed by the constraint, (6.12), as basis
states, compute the matrix elements of the symmetry breaker according to
(6.27) and numerically diagonalize the (truncated) matrix of the Hamiltonian
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operator, (6.26), to obtain the exact energy eigenvalues and states [10, 16].
Equivalently, we achieve exact diagonalization by abandoning the concept of
SU(3) representations but introducing eight SU(3) Euler angles to parame-
terize the collective rotations A(t) and quantize these angles canonically. This
procedure is known as the Yabu–Ando approach [14], and we will explain it
in more detail in the next section.

6.4 Diagonalization with Flavor Symmetry Breaking

A suitable Euler angle parameterization of the collective rotations A is given
in (D.1) and (D.2). The crucial feature that makes possible the exact diago-
nalization of the Hamiltonian, (6.26), is that the potential depends only on a
single of the eight Euler angles:

1 −D88 =
3
2
sin2ν . (6.31)

This particular angle parameterizes the soliton’s collective flavor rotation into
strangeness direction; it is the strangeness changing Euler angle. With this
simplification, the Schrödinger-type equation

[
C2 + ω2sin2ν

]
Ψ = εSBΨ , (6.32)

which in the general Euler angle description is a coupled partial differential
equation in eight variables, boils down to a set of coupled ordinary differential
equations for only a single variable, the strangeness changing angle ν. These
equations are numerically integrated in each spin–isospin channel separately.
Technical details of that treatment may be traced from Appendix D. The
so-computed eigenvalue, εSB, then enters the mass formula for the baryons:

MB = Ecl +
1
2

(
1
α2

− 1
β2

)
J(J + 1) − N2

CB
2

24β2
+

1
2β2

εSB . (6.33)

This represents the exact eigenvalue of the collective coordinate Hamiltonian
(6.26). Since this diagonalization procedure does not make explicit contact
with SU(3) representations, the constraint on YR can easily be implemented
by simply substituting the appropriate numerical value in (D.9). Although
this approach was originally formulated for NC = 3 [14], the generalization to
arbitrary (odd) NC is straightforward [17].

For physical applications, we surely consider the case YR = 1. In Table 6.1,
we compare the predicted mass differences (with respect to the nucleon) from
(6.33) with the experimental data. Note that the employed Skyrme model
only has a single free parameter, which we take to be e = 4.0, i.e., only
slightly different from the two-flavor model. The decay constants and the
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Table 6.1. Comparison of predicted mass differences to the experimental data for
the low-lying J = 1

2
and J = 1

3
baryons in the Skyrme and vector meson (VM)

models

baryon Skyrme VM expt.

Λ −N 163 159 177
Σ −N 264 270 254
Ξ −N 388 398 379
Δ −N 268 311 293
Σ∗ −N 406 448 446
Ξ∗ −N 545 592 591
Ω −N 680 718 733

meson masses are fixed to their empirical values. As of such, the 10% or
better agreement should be characterized as good.

A similar computation has been performed in the vector meson model that
has been presented in Sect. 4.7 [1, 18]. In comparison with the Skyrme model,
the three-flavor treatment of this vector meson model is conceptually more
complicated because of two reasons:

(i) additional symmetry breaking terms

α1[U ]
3∑

i=1

D8iRi , β1[U ]
7∑

α=4

D8αRα , etc., (6.34)

occur that must be expressed in Euler angles as (6.31) and included in the
eigenvalue problem, (6.32),

(ii) strange vector meson field components that vanish classically get induced
by the collective rotations into strangeness direction in addition to those
already induced by the SU(2) rotations, (5.64).

We refrain from exploring these complications in detail, but merely quote the
numerical results in Table 6.1. Obviously, the model describes the spectrum
well. Again this computation supports the choice κ ≈ 1 for the parameter
that could not be fixed from meson properties, cf. the discussion after (4.66).

For the spin 1
2 baryons, the exact diagonalization is important as signif-

icant deviations from the first-order approximation, (6.29), occur. This be-
comes most obvious from the ratios of mass differences shown in Table 6.2.
This comparison not only shows that the first-order treatment is insufficient

Table 6.2. Ratios of mass differences between baryons with spin 1
2
. The entry

“exact” gives the predictions from the exact diagonalization of (6.32), while the
last column refers to the approximation of (6.29). The empirical data are shown in
column “expt.”

baryon mass diff. exact expt. 1. ord.

(MΛ −MN ) : (MΣ −MΛ) : (MΞ −MΣ) 1:0.61:0.76 1:0.43:0.69 1:1:0.5



98 6 Soliton Quantization in Flavor SU(3)

0 4 6 8 10

ω2

3

6

9

12

εSB εSB

N
Λ
Σ
Ξ

6

9

12

15
Δ
Σ∗

Ξ∗

Ω

2 0 4 6 8 10

ω2

2

Fig. 6.4. Solutions to the Schrödinger-type equation (6.32) as functions of the
strength of the symmetry breaking, ω2. The left and right panels contain the spin
1
2

and 3
2

states, respectively

for convergence but also that it predicts the Σ hyperon far too low. There
are other approaches which cure this shortcoming by introducing a symme-
try breaker that is linear in the hypercharge. Though such a term is indeed
permitted by the symmetries, it requires a contribution to Lsb, (6.22), that is
linear in the time derivatives. This cannot be constructed from αμ = U †∂μU in
a Lorentz covariant fashion. Vector or chiral quark interactions as in [2, 3, 18]
must be added. In any event, the symmetry breaker proportional to 1 −D88

dominates in all these models so that higher order contributions in symmetry
breaking are sizable and important.

The first-order treatment yields an equal spacing in the spectrum of the
spin 3

2 baryons [13]. Higher order contributions cause only minor modifications
thereof. These results are summarized in Fig. 6.4 which shows the dependences
of the eigenvalues εSB on the symmetry breaking strength for all low-lying spin
1
2 and spin 3

2 baryons.

6.5 Beyond the Classical Hedgehog Solution

So far, we have treated the three-flavor soliton by rigidly rotating the two-
flavor hedgehog in SUF(3). It is pretty obvious that this can only be an
approximation. Consider, e.g., the asymptotic behavior of the chiral field U .
Regardless of the flavor orientation A ∈ SU(3), it is solely determined by the
pion mass as in (4.29). However, the symmetry breaking terms imply that the
kaonic components of U should asymptotically approach the vacuum value
with a Yukawa tail that is governed by the kaon mass. To improve the rigid
rotator approximation, we assume that the soliton rotates so slowly4 that its
shape adjusts itself to the forces exerted by symmetry breaking and the time
derivatives of the collective coordinates may be omitted in a first step. Since
spin and isospin coordinates can be absorbed by global symmetry transfor-
mations, this corresponds to the field parameterization

4 This motivates the nomenclature slow rotator approach (SRA).



6.5 Beyond the Classical Hedgehog Solution 99

U(x, ν) = e−iνλ4UH(x) eiνλ4 , (6.35)

with constant strangeness changing angle ν, cf. (D.1). Substituting this field
configuration into the Lagrangian yields an energy functional that paramet-
rically depends on ν [19]:

E(ν)[F ] =
∫

d3r

[
f2
π

2

(
F ′2 + 2

sin2 F

r2

)
+

sin2 F

e2r2

(
F ′2 +

sin2 F

2r2

)

+ m2
πf

2
π(1 − cosF )

+ sin2ν
[1
2
(
f2
K − f2

π

)
(
F ′2 +

2 sin2 F

r2

)
cosF

+
(
m2
Kf

2
K −m2

πf
2
π

)
(1 − cosF )

]
]

. (6.36)

The minimum of the energy functional (6.36) is obtained by varying this func-
tional with respect to F (r) at fixed ν ∈ [0, π/2]. Hence, the chiral angle is a
function not only of the radial distance but also of the strangeness changing
Euler angle ν: F = F (r, ν). It is then obvious that the symmetry breaking
forces yield F (r, π/2) → exp(−mKr) for r → ∞, i.e., in the slow rotator ap-
proach, the kaon field has the proper asymptotic behavior (Yukawa tail). This
chiral angle also causes the (minimal) classical energy to implicitly depend on
ν on top of the sin2ν term in (6.36).

In the second step, the quantization of the slow rotator proceeds along the
line of the rigid rotator by subsequently taking all Euler angles to be time
dependent. Essentially, this yields the moments of inertia to be ν dependent.
Accounting for ordering ambiguities by hermitionizing, the Hamilton operator
reads

H = E(ν) +
(

1
2α2(ν)

− 1
2β2(ν)

)
J2

+
1
2

{
1

2β2(ν)
, C2 [SU(3)]

}
− 3

8β2(ν)
. (6.37)

An additional contribution proportional to
(

dν
dt

)2
has been shown to be negli-

gibly small [19] and is further on omitted. Since the quadratic Casimir opera-
tor may essentially be considered as a second-order differential operator of the
strangeness changing angle ν, the eigenvalue problem HΨ = εΨ is solved with

Table 6.3. Slow rotator results [19] for the baryon mass differences with respect to
the nucleon compared to experimental data

baryon Λ Σ Ξ Δ Σ∗ Ξ∗ Ω

model 177 285 381 298 477 619 731
expt. 177 254 379 293 446 591 733
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the techniques introduced in Sect. 6.4. Table 6.3 contains the comparison of
the resulting mass differences with the experimental data. In that calculation,
the only free parameter was adjusted to e = 3.46 leading to a best fit for
the overall picture of the mass differences. The resulting mass differences are
similar to those obtained in the rigid rotator approach. As we will observe in
Chap. 7 (cf. Table 7.2), the main feature of the chiral angle being sensitive to
symmetry breaking is more strongly reflected in deviations of predicted static
baryon properties from SU(3) relations, most notably the magnetic moments.

Finally, we note that an additional technique exists to reflect symmetry
breaking in the soliton extension. In [20, 21], a collective coordinate, μ(t) for
the size of the soliton was introduced and included in the quantization of
the rigid rotator. (This coordinate is often called breathing mode.) The sym-
metry breaking terms in the Lagrangian build a common potential for this
new collective coordinate and the strangeness changing angle ν. Hence, the
forces exerted on the size of the soliton vary even within a flavor multiplet
and the quantization of μ also depends on the quantum numbers of the con-
sidered baryon: The expectation value of the size of the chiral angle decreases
with (the modulos of) strangeness. In essence, this approach corresponds to a
strangeness-dependent chiral angle similar to the slow rotator approach dis-
cussed above. It is thus not surprising that the results for baryon properties
are similar in the two approaches. However, the quantization of μ also allows
us to study radially excited baryons. Here we will not further elaborate on
this approach but eventually reconsider it and present numerical results in
the framework of non-harmonic excitations in Sect. 8.5 and when discussing
exotic baryons in Chap. 9.

6.6 Bound State Approach

In the previous sections, we have discussed several treatments of the
three-flavor soliton model. They were based on the assumption that the
time-dependent solution to the Euler–Lagrange equations is reasonably ap-
proximated by elevating the coordinates which parameterize the flavor orien-
tation to time-dependent quantities. Of course, such treatments are motivated
by considering the flavor symmetry to be approximately realized, allowing for
large amplitude fluctuations into the direction of the “would-be” symmetry.
Subsequently, the symmetry breaking effects are treated within the space of
these collective coordinates. The exact diagonalization of the resulting collec-
tive Hamiltonian is possible according to the Yabu–Ando approach [14] and
yields the baryon masses and wave functions. Adopting, however, the con-
trary point of view that only small amplitude fluctuations are permitted for
the broken symmetry, implying that the corresponding restoring forces are
significant, leads to the treatment that has become known as the bound state
approach (BSA). The reason for this notion is that hyperons are constructed
out of the soliton and a kaon mode, which is bound in the background field of
the soliton. This treatment has been initiated by Callan and Klebanov [22, 23]
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and later been employed in many aspects, as will be partially sketched in this
section. Actually, this approach is comparable to the old compound hypoth-
esis, where hyperons are considered as molecules consisting of a nucleon and
a kaon [24].

To introduce the strangeness degrees of freedom as small amplitude fluc-
tuations, we consider the parameterization

U(x, t) = ξπeiZξπ with Z =
√

2
fK

(
0 K(x, t)

K†(x, t) 0

)
, (6.38)

where ξπ is a unitary matrix that differs only in the SU(2) subgroup from the
unit matrix such that ξ2π = UH in (6.3). Furthermore, K(x, t) is the isospinor
that parameterizes the small amplitude kaon field. Expanding up to quadratic
order in K yields the Lagrangian

LK = (DμK)†DμK −m2
KK

†K − f2
πm

2
π

4f2
K

K† (ξπ + ξ†π − 2
)
K (6.39)

− 1
2
K†Ktr

(
pμp

μ +
1

16e2f2
K

[
ξ†π∂μξπ, ξ

†
π∂νξπ

]2
)

+
1

2e2f2
K

{

(DμK)†DνKtr (pμpν) − (DμK)†DμK (pνpν)

− 3 (DμK)† [pμ, pν ]DνK

}

− iNC

4f2
K

Bμ

[
K†DμK − (DμK)†K

]
.

The covariant derivative is Dμ = ∂μ − ivμ with pμ and vμ are those of (4.62)
with ξ substituted5 by ξπ . The last term stems from the Wess–Zumino term
(4.49). The derivation of its special from in (6.39) is outlined in Appendix C.

The factor 1
fK

in the parameterization, (6.38), causes all coefficients in
the Lagrangian, (6.39), to be O

(
N0

C

)
. Hence, the isospinor field K(x, t) has

a smooth limit as NC → ∞. We will see in Chap. 8 that this feature is
common to all harmonic fluctuations about the soliton. Furthermore, any
higher order term in the expansion with respect to K(x, t) will also contain
additional powers of 1

fK
and thus vanish in the limit NC → ∞. This implies

the important feature that the bound state approach is exact in the large NC

limit [25].
While the general case for the field K(x, t) is of physical relevance for

scattering data (cf. Sect. 8), the P-wave channel is of particular interest for
examining the spectrum and static properties of the low-lying baryons. This
channel contains a bound state, evolving from the zero-mode that, in the
flavor symmetric case, is associated with the rotation into the strange flavor
direction. That is, this bound state is the “would-be” Goldstone boson of the

5 We adopt that convention (for ξ and ξπ) only in the context of the bound state
approach to the Skyrme model, i.e., here and in Appendix C.3.
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flavor rotations into strangeness direction. The suitable ansatz for this P-wave
mode reads

KP(x, t) =
∫

dω
2π

e−iωtkP(r, ω)x̂ · τ
(
a1(ω)
a2(ω)

)
. (6.40)

The spectral functions ai(ω) become creation and annihilation operators in
the process of canonical quantization.

The Schrödinger-type equation for kP(r, ω) obtained from the Lagrangian,
(6.39), can be cast in the form
{

− 1
r2

d
dr

(
r2h(r)

d
dr

)
+m2

K+VP(r)−f(r)ω2+2λ(r)ω

}

kP(r, ω) = 0 . (6.41)

The explicit expressions of the radial functions h, VP, f and λ may be traced
from the literature6 [22, 23, 26]. The term linear in the frequency ω originates
from the Wess–Zumino action and removes the degeneracy between solutions
of positive and negative ω. From the orthogonality condition associated with
the above differential equation, the normalization

2
∫

drr2kP(r, ω) (f(r)ω − λ(r)) kP(r, ω) = sgn(ω) (6.42)

emerges. The so-normalized solutions to the bound state equation (6.41) are
drawn in Fig. 6.5. In particular, it is illustrated how the bound state wave
function evolves from the zero mode, which is proportional to sin(F/2), when
the parameters are tuned from those describing the flavor symmetric case to
physical ones. The bound state energy computed with the physical parameters
(mK = 495 MeV, fK = 1.22fπ) is ω0 = 252 MeV for the Skyrme parameter
e = 4.25. Note that the asymptotic form of the bound state wave function is
exp(−

√
m2
K − ω2

0r) rather than exp(−mKr) as one would expect for a (static)
kaon field.

The sign of the bound state energy also determines its strangeness because
the integrand of the normalization condition, (6.42), arises from a derivative of
the Lagrangian with respect to the kaon frequency, i.e., the phase of the kaon
field. The corresponding Noether charge is strangeness. In correspondence to
the quark model definition of strangeness, we have adopted sign conventions
such that a positive frequency yields negative strangeness. To identify spin
and flavor quantum numbers, we again resort to collective coordinate quanti-
zation. Since the kaon fields are already parameterized by the small amplitude
fluctuations, we only require A2(t) ∈ SU(2) embedded in a 3 × 3 matrix:

U(x, t) =

⎛

⎝
A2(t) 0

0

0 0 1

⎞

⎠ ξπeiZξπ

⎛

⎝
A†

2(t) 0
0

0 0 1

⎞

⎠ . (6.43)

6 If we only considered the non-linear model, (2.40), we would have f ≡ 1.
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Fig. 6.5. The radial dependence of the bound state wave function in the Skyrme
model. The normalization is according to (6.42). The parameters in the non-strange
sector are fπ = 93 MeV, e = 4.25 and mπ = 138 MeV

This inclusion of the collective coordinates adds a term to the Lagrangian,

ΔL =
1
2
χ [F, kP]Ω ·

⎛

⎝
2∑

i,j=1

a†iτ ijaj

⎞

⎠ . (6.44)

The angular velocity Ω is obtained from A2(t) as in (5.16), while the operators
ai are defined in (6.40). The dimensionless constant of proportionality, χ, is a
radial integral that involves the chiral angle, F (r), and the normalized bound
state wave function, kP(r, ω0) [26]. We find χ = 0.332 for e = 4.25. The
quantization is made simple by the observation that the last factor in (6.44)
is twice the total grand spin: the vector sum of the total spin and isospin in
the intrinsic frame: Gi = Ji +DjiIj . The D-matrix for this transformation to
the intrinsic frame is given in (5.22) and the isospin is conjugate to Ω′ as in
(5.36). At the end, it should be obvious that the above term gives rise to a
spin–isospin coupling proportional to J · I that can be reexpressed in terms
of total spin (J(J + 1)) and isospin (I(I + 1)). Finally, the quantization of
this system, which is discussed at length in the literature, cf. [23], yields the
mass formula

MB = Ecl + |S|ω0 +
1

2α2
[χJ(J + 1) + (1 − χ)I(I + 1)] , (6.45)
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Table 6.4. Mass differences of the low-lying baryons with respect to the nucleon
in the bound state approach to the Skyrme model. The Skyrme model parameter is
taken e = 4.25 to properly reproduce MΔ −MN . All data are in MeV

baryon Λ Σ Ξ Δ Σ∗ Ξ∗ Ω

model, (6.45) 205 334 505 293 431 602 805
expt. 177 254 379 293 446 591 733

for the low-lying P-wave baryons with strangeness S = 0,−1,−2,−3.
Obviously, χ parameterizes the hyperfine splitting. For consistency with the
expansion, (6.39), contributions of order χ2 and G2 ∼ (ai)

4 are omitted in
the derivation of (6.45). The resulting mass differences are shown in Table 6.4.
The approach overestimates the mass differences significantly, in particular
for S ≤ −2. This indicates that non-linear effects that are omitted in the
bound state approach (but included in the rigid rotator treatment) are in-
deed important.

We have already seen that there is no degeneracy between the solutions to
the Schrödinger-type equation (6.41) for ±ω. This implies that the spectrum
in the S = +1 channel differs from the above studied case with S = −1.
Actually, the S = +1 channel does not contain a bound state unless mK is
tuned to unphysically large values [27] or the strength of the Wess–Zumino
term is artificially reduced [28]. Even more, above threshold this channel does
not even posses a clear resonance, as can be seen from Fig. 9.5. Originally,
that was interpreted as the absence of pentaquarks (S = +1 states must at
least be built from four quarks and an anti-quark) in the Skyrme model [29].
In Chap. 9, we will discuss that issue in more detail and observe that this
conclusion is premature.

We round up the discussion of the P-wave kaon fluctuations by noting that
the bound state energy can reliably be estimated by sandwiching the equation
of motion (6.41) between the properly normalized (would be) zero mode wave
function (for the time being we assume fπ = fK)

z(r) =
√

4π
fπ√
β2

sin
F (r)

2
with

∫
drr2z(r)f(r)z(r) = 1 (6.46)

and solving for ω. We first define (not to be confused with the exact eigenvalue
computed above)

ω0 =
∫
r2drz2(r)2λ(r) =

NC

4β2
, (6.47)

which is O(N0
C). Then the equation for ω reads

ω2 =
3γ
8β2

+ ω0 ω , (6.48)

with the functional γ given in (6.25). This quadratic equation for ω has the
negative valued solution −ωΛ with
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ωΛ =
1
2

[√
ω2

0 +
3γ
2β2

− ω0

]
. (6.49)

The second solution for ω estimates the energy of the potential S = +1
pentaquark Θ+, cf. Fig. 6.3,

ωΘ =
1
2

[√
ω2

0 +
3γ
2β2

+ ω0

]
. (6.50)

Models typically yield ωΘ > mK and 3γ/2β2 > ω2
0 . This is in accordance with

the above observation that there is no S = +1 bound state and suggests that
a perturbation treatment in flavor symmetry breaking is bound to fail.

Utilizing the zero mode wave function to estimate the hyperfine parameters
yields

χ− = 1 − 4α2ωΛ

8β2ωΛ +NC
and χ+ = 1 − 4α2ωΘ

8β2ωΘ −NC
, (6.51)

where the subscript labels strangeness. The above estimates (6.49–6.51) may
also be interpreted as the BSA results when the Hilbert space for the fluctu-
ations is restricted to the collective modes of the soliton. We will return to
that estimate in Sect. 9.4.

Finally, we remark that also the S-wave channel,

KS(x, t) =
∫

dω
2π

e−iωtkS(r, ω)
(
a1(ω)
a2(ω)

)
, (6.52)

contains a bound state solution with negative strangeness. This state has been
employed to describe the Λ(1405) resonance [26].

6.7 Baryons with a Heavy Valence Quark

The description of baryons with heavy quarks is a voluminous subject on its
own. Here we will merely allude to it because the techniques involved are
very similar to those of the bound state approach discussed in the previous
section. The interested reader may want to consult the numerous references
listed in [30] for more thorough explorations of this subject.

Starting point for the treatment of heavy quarks is the important obser-
vation that QCD allows for an expansion in the inverse current quark mass.
This expansion defines the heavy quark effective theory (HQET) [31]. A cru-
cial result is that the spin-dependent forces are suppressed in the limit that
this mass tends to infinity. As a consequence, pseudoscalar and vector mesons
built from the same quarks become degenerate in that limit. This feature is
indeed reflected in the data [32]:

mD±∗ −mD± ≈ 138 MeV and mB±∗ −mB± ≈ 46 MeV . (6.53)
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To construct an effective theory for these mesons, the pseudoscalar (P ) and
vector mesons (Qν) are first reparameterized such that the frequency of the
fluctuating modes account for the large masses

P̃ = eiMV ·xP and Q̃ν = eiM∗V ·xQν . (6.54)

Here M and M∗ are the (almost degenerate) pseudoscalar and vector meson
masses, respectively. The four-velocity V μ characterizes the reference frame of
the heavy quark. The exponential functions take care that the leading order
terms cancel in the effective meson Lagrangian when a large mass expansion
is performed. Secondly, these fields are combined in a single heavy meson
multiplet:

H =
1
2

(1 + γμV
μ)
(
iγ5P̃ + γνQ̃ν

)
and H̄ = γ0H†γ0 . (6.55)

The heavy meson fields P and Qν are isospinors for the case of two light
flavors and so is H. The corresponding components refer to the bound states
of the heavy quark and the light (anti)quarks up and down, respectively. We
are mostly interested in the interaction between heavy and light mesons. Of
course, that should be governed by chiral symmetry for the light degrees of
freedom of H. A model Lagrangian with as few as possible derivatives acting
on the light pseudoscalar meson fields reads

1
M

LH → iV μTr
{
H (∂μ − ivμ) H̄

}
− d Tr

{
Hγμγ5p

μH̄
}

+ · · · , (6.56)

where the ellipsis indicate subleading pieces in 1/M . The currents vμ and pμ
are defined in (4.62). The single new parameter can be determined from the
semi-leptonic D → K transition: d ≈ 0.53 [33, 34]. In [30, 35], the coupling to
the light vector mesons ρ and ω was also studied. For clarity of presentation,
their interaction with H is not made explicit in (6.56).

Having set up the model for the interaction between the heavy and light
mesons, we attempt to construct a bound state solution for H in the same
fashion as we did for the kaon field in Sect. 6.6. The soliton–bound state
combination will describe a baryon with a heavy quark. In the first step, we
substitute the hedgehog configuration for vμ and pμ. As for the kaon bound
state, we require an ansatz for the H. In the rest frame Vμ = (1,0)μ, we have

Ha =
(

0 0
Ha 0

)
(6.57)

in the standard representation for the Dirac matrices. Here a = 1, 2 (∼up,
down) is the isospin index and Ha = (Ha

lh) is (for a prescribed value of a)
a 2 × 2 matrix whose indices represent the spin projections of the light (l)
and heavy (h) quarks inside the heavy meson. Again we expect the bound
state to reside in the P-wave channel. In Fourier space for the frequency, the
corresponding wave function reads
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Ha
lh = e−iωBt u(r)√

2M
(x · τ )ad εdlχh . (6.58)

The two-dimensional ε–tensor emerges from the contraction of the light isospin
and spin components according to the hedgehog symmetry [36]. We now only
require the solution to the Schrödinger equation for the radial function u(r)
to compute the binding energy ωB. This is also simple because we already
observe from Fig. 6.5 that the bound state wave function gets more and more
concentrated at the center of the soliton as the meson mass increases. Hence,
in the ultimate heavy quark limit, the bound state wave function is fully
determined by the properties of the soliton at r = 0. To this end, the binding
energy is found to be

ωB =
3
2
dF ′(0) − 3

√
2c

gmV
G′′(0) +

α

2
ω(0) , (6.59)

where primes denote derivatives with respect to the radial coordinate. In
(6.59), we have again made explicit the contributions from the light vector me-
son profiles computed in Sect. 4.7. The coupling constant c can be estimated
from the semi-leptonic decay D → K∗ [34]7 to be c ≈ 1.60. Unfortunately,
there is no direct experimental evidence for the value of α. (It would be unity
if a possible definition of light vector meson dominance for the electromag-
netic form factors of the heavy mesons were to be adopted.) So α is commonly
considered as a parameter. Typical numerical results for ωB are of the order
700− 900 MeV [35] and the difference M −ωB is the heavy quark limit of the
mass difference between the nucleon and a heavy baryon, up to 1/NC correc-
tions. In the bottom sector, the corresponding prediction 4260 − 4460 MeV
underestimates the empirical value M(ΛB) −M(N) = 4680 ± 2 MeV some-
what. That is, the predicted binding energy is too large. Of course, we would
ultimately like to investigate the finite heavy meson mass case and eventu-
ally compare its predictions to the above result. This will be sketched in the
reminder of this section.

To consider finite heavy meson masses, we have to resort to the field vari-
ables P and Qν in (6.55) and develop a relativistic Lagrangian that yields
(6.56) as M and M∗ tend to infinity. With the transformation, (6.54), it is a
matter of straightforward algebra to verify that the Lagrangian

LH = (DμP )†DμP − 1
2

(Qμν)†Qμν −M2PP † +M∗2Q†
μQ

μ (6.60)

+ 2iMd
[
P †pμQμ −Q†

μp
μP
]
− d

2
εαβμν

[
Q†
ναpμQβ +Q†

βpμQνα

]
,

with Qμν = DμQν − DνQμ indeed turns into (6.56). In the absence of light
vector mesons, the covariant derivative is as in (6.56), Dμ = ∂μ− ivμ. In fact,

7 The sign of c (as well as d) is fixed by the assumption that there exists a continuous
transition from the chiral Lagrangian to the HQET model [34].
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the condition to reproduce (6.56) in the infinite mass limit enforces the coef-
ficients of the two last terms in (6.60) in the specific way they are presented.
Lorentz and chiral invariance alone do not relate these two terms.

When light vector mesons are included, the covariant derivative contains
the undetermined parameter α, Dμ = ∂μ − iαgρμ − i (1 − α) vμ. Also, two
more terms enter the Lagrangian,

ΔLH = −2
√

2icM
mV

{
2Q†

μF
μν (ρ)Qν

− i
M
εαβμν

[
(DβP )† Fμν (ρ)Qα +Q†

αFμν (ρ)DβP
]}

, (6.61)

that are related to each other via the heavy quark symmetry as are the two
last terms in (6.60). We refer to Sect. 4.7 for further definitions regarding the
light vector meson fields.

Again, the most strongly bound states are expected in the P-wave channel.
The corresponding ansätze read

P =
1√
4π

Φ(r)x̂ · τ̂χeiεt, Q0 =
1√
4π

Ψ0(r)χeiεt , (6.62)

Qi =
1√
4π

[
iΨ1(r)x̂i +

1
2
Ψ2(r)εijk x̂jτk

]
χeiεt , (6.63)

where χ
(
a1

a2

)
is a space-independent spinor, as in (6.40). Phases are intro-

duced such that all four profile functions are real. The (eigen) frequency and
binding energy are related via ε = M − ωB. In the heavy quark limit, the
multiplet H is characterized by a single radial function (6.58). This implies
that for M = M∗ → ∞ the radial functions in (6.63) must satisfy the linear
relations

Ψ1 = −Φ, Ψ2 = −2Φ (6.64)

together with Ψ0 = 0. In general, however, a set of second-order differen-
tial equations similar to (6.41) is obtained for these radial functions [35]
from which the binding energies are computed. Numerical results for a typ-
ical value of the Skyrme model parameter are displayed in Table 6.5. They
clearly demonstrate that the heavy limit does not apply to the charm sec-
tor and only hardly to the bottom sector when it comes to predict the
masses of the lowest lying baryons in the respective sectors. Even though
the relations (6.64) are reasonably well satisfied, it seems inappropriate to
assume that these profile functions are localized at the center of the soli-
ton. For a sensible model prediction, furthermore, the projection onto states
with good spin and isospin quantum numbers as in (6.45) is necessary.
This has been done not only for the above-discussed P-wave bound state
but also for the S-wave channel for the heavy mesons [30]. Results based
on both the Skyrme model and the vector meson solitons are presented in
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Table 6.5. Binding energies from the relativistic model, (6.60), for the Skyrme
model parameter e = 6.4. All data are in GeV and the entry “∞” is obtained from
(6.59). The picture on the right shows typical bound state profile functions. They
correspond to the B-meson case in the table

M M∗ ωB

∞ ∞ 1.016

0 0,1 0,2 0,3 0,4 0,5 0,6

r/fm

–0,6

–0,4

–0,2

0

0,2

0,4

Φ
Ψ0

Ψ1

Ψ2

50.0 50.0 0.869
40.0 40.0 0.853
30.0 30.0 0.831
20.0 20.0 0.796
10.0 10.0 0.721
5.279 5.325 0.595
1.865 2.007 0.314

Table 6.6. In either case, the model parameters in the light sector are cho-
sen to reproduce the Δ-nucleon mass difference. Despite the fact that the
parameter α is undetermined, the predicted Λc − N mass difference (row N
in the table) undoubtedly shows the necessity to include light vector me-
son degrees of freedom. The model predictions for non–ground state b-quark
baryons, M(ΣB)−M(ΛB) ≈ 190 MeV and M(Σ∗

B)−M(ΛB) ≈ 205 MeV [30],
favorably agree with the data (192 ± 2) MeV and (212 ± 2) MeV that
very recently became available [39]. This prediction for the hyperfine split-
ting dominantly arises higher derivative terms in (6.60) and (6.61) that
do not manifestly break heavy flavor symmetry [40]. Their main effect is
to push the heavy meson fields away from the center of the soliton. In
this respect, the present method differs from earlier approaches that as-
signed the hyperfine splitting to an additional piece in the Lagrangian that
breaks the symmetry explicitly [41]. Hence, the above quoted data represent

Table 6.6. Heavy baryon mass differences with respect to Λc. Primes indicate nega-
tive parity, i.e., S-wave bound states. Baryons with spin 3

2
carry a star. The physical

meson masses 1865 MeV and 5279 MeV are used when computing the mass differ-
ences to the nucleon and the Λb. The empirical data are taken from the PDG [32],
see also [37, 38]. All energies are in MeV. Question marks denote baryon states not
observed so far

α −0.1 0.0 0.1 0.2 0.3 Expt. Skyrme

Σc 171 172 174 175 177 168 185
Σ∗

c 215 214 213 212 211 233 201
Λ′

c 250 249 245 242 238 308 208
Σ′

c 415 413 408 402 397 ? 335
Σ′∗

c 468 467 464 461 458 ? 437

N −1237 −1257 −1278 −1299 −1321 −1345 −1553

Λb 3160 3164 3167 3170 3173 3335 ± 9 3215
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an important verification of the method based on (6.60) and (6.61): it
requires no further extension to reasonably describe baryons with a heavy
valence quark.

6.8 Brief Summary on Soliton Quantization

In this and the preceding chapters we have extensively described the quan-
tization of chiral solitons. The main motivation has been the generation of
baryons states from solitons in effective meson theories. As explained in the
case of a simple quantum mechanical example, we have accomplished that goal
by introducing and canonically quantizing collective coordinates that charac-
terize the symmetries which are broken by the classical solution to the field
equations. In the case of the soliton, the collective coordinates parameterize
the flavor and coordinate space rotations, the latter are absorbed into the
former by means of the hedgehog structure of the soliton.

Having established that procedure as a legitimate approximation and ap-
plying it to the case of three light flavors (up, down, strange), i.e., the SU(3)
group structure, unambiguously and straightforwardly yielded the correct
quantum numbers for the low-lying baryons. The Wess–Zumino term that
transfers the quark anomaly from QCD to the effective meson theory is es-
sential to obtain that result.8 It must be stressed that no assumption has
been made about the quark content and structure of the baryons: neither did
the idea enter that baryons are built from three (valence) quarks nor was
any prejudice made about a symmetric spin–flavor and anti-symmetric color
wave function. The analogy with the SUS(2) × SUF(3) decomposition of the
baryon wave function is an immediate result of the soliton quantization. To
the knowledge of the author, the chiral soliton picture is unique in actually
predicting the quantum numbers of the low-lying baryons.

Originally, we gained these conclusions in the somewhat unrealistic case of
light flavor symmetry, which näıvely occurs as the only allowed regime for the
SU(3) collective coordinates. However, as the studies in [17] unambiguously
show, the introduction of collective coordinates need not be limited to exact
symmetries, see also Sect. 8.5. So, by exactly diagonalizing the system in-
cluding flavor symmetry breaking, we observed little changes in the structure
(and definitely not in the quantum numbers) of the wave functions, just an
expected mixing between different irreducible representations of the broken
symmetry. However, we have also seen that in the particular limit of largeNC,
in which the bound state approach reproduces the exact solution of the soliton
model, the SUF(3) structure may be well hidden. This is merely because that
limit omits the important non-linearities of the flavor rotations. And indeed,
generalizing the treatment of Sect. 6.4 to arbitrarily large NC on the one side

8 In chiral quark models (Chap. 2), it directly emerges from the imaginary part of
the Euclidian action, (2.16) [42].
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and on the other side constraining the bound state approach such that the
bound state wave function dwells in the subspace of rotational excitations
yields identical spectra [17]. We will thoroughly explore that feature later in
Sect. 9.4.
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7

Baryon Properties

Empirically most of the baryon properties are obtained by testing baryons
with electro–weak probes. In the QCD language these probes couple to the
baryon constituents as electroweak gauge currents. Therefore, baryon proper-
ties may in general be computed as matrix elements of these currents. Since
the chiral Lagrangians emulate the QCD symmetries, the corresponding cur-
rents must be identified as the QCD symmetry currents. This paves the way
to soliton model studies of baryon properties as the matrix elements of the
associated symmetry currents. This is a two-step program. First, we find the
currents in the model and substitute the soliton configuration. Second, we em-
ploy the techniques of the previous chapters to generate baryon states from
which the matrix elements are computed.

We have already discussed some soliton model predictions for proper-
ties of the nucleon in Sect. 5.4. He we will refine those considerations and
especially generalize them to flavor SU(3) utilizing the quantization tech-
niques discussed in the previous chapter. Essentially, we will concentrate
on the Skyrmion in the rigid rotator quantization of Sect. 6.4. We will
also comment on effects of the other quantization procedures, in particu-
lar those that incorporate symmetry breaking effects on the soliton exten-
sion (Sect. 6.5). In addition, we will address effects that cannot be cor-
rectly described in the model with pseudoscalar fields only but require the
inclusion of short-range effects via either chiral quarks or vector meson
fields.

We start by writing the covariant form of the vector (V aμ ) and axial-vector
(Aaμ) currents in the Skyrme model. These are the symmetry currents asso-
ciated with the transformations U → U + [U,Qa] and U → U + {U,Qa},
respectively. The Qa are the matrices that generate the infinitesimal trans-
formation in flavor space, e.g., the Gell–Mann matrices of SU(3). We have
already presented the contributions from the flavor symmetry part of the ac-
tion in (5.46) which we now supplement by the contribution from the flavor
symmetry breaking term, (6.22)

H. Weigel: Baryon Properties, Lect. Notes Phys. 743, 113–145 (2008)
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V aμ (Aaμ) = ∓ i
2
f2
π tr {Qa (αμ ± βμ)} (7.1)

∓ i
8e2

tr {Qa ([αν , [αμ, αν ]] ± [βν , [βμ, βν ]])}

± 1
16π2

εμνρσtr {Qa (αναρασ ∓ βνβρβσ)}

∓iβ′tr
{
Qa
(
{UM + MU †, αμ} ± {MU + U †M, βμ}

)}
,

where we again set NC = 3 and also included terms that arise from the
first term in (6.19). We recall our previous conventions αμ = U †∂μU and
βμ = U∂μU

†. The matrix M = diag(1, 1, x) is proportional to the current
quark mass matrix with x = m2

K

m2
π
−1 and the parameter β′ is determined from

difference of the decay constants [1, 2]

(
fK
fπ

)2

= 1 +
4
f2
π

β′(1 − x) . (7.2)

7.1 Electromagnetic Properties

In a first step, we are interested in the electromagnetic properties of the spin-
1
2 baryons. For this purpose, we consider the electromagnetic vector current
V e.m.
μ that is obtained from (7.1) employing the linear combination (see foot-

note 1 of Appendix C for the generalization to NC �= 3)

Qe.m. = diag
(

2
3
,−1

3
,−1

3

)
= Q3 +

1√
3
Q8 . (7.3)

Its matrix elements define Dirac and Pauli form factors via

〈B(p′)|V e.m.
μ |B(p)〉 = u(p′)

[
γμF

B
1 (q2) +

σμνq
ν

2MB
FB2 (q2)

]
u(p) , (7.4)

where pμ and p′μ are the on-shell momenta of the initial and final baryons and
qμ = pμ − p′μ is the momentum transfer. The above definition is the standard
Lorentz covariant parameterization of the matrix elements of the conserved
electromagnetic current, in which u(p) is the Dirac spinor for the baryon B.
Note that MB is just a parameter in this decomposition and refers to the
empirical mass rather than the model result. It is convenient to introduce
“electric” and “magnetic” (so-called Sachs) form factors :

GBE (q2) = FB1 (q2) − q2

4M2
B

FB2 (q2) , GBM(q2) = FB1 (q2) + FB2 (q2) . (7.5)

In the next step, we have to substitute the (collectively) rotating hedge-
hog, (6.4), into the covariant expression above. This is a straightforward but
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eventually quite a tedious task. The resulting expression is a sum in which
each term is a product of a radial function and a function that depends on the
collective coordinates A(t) (and their time derivative measured by the angular
velocities Ωa (6.6)). For the spatial part of the vector current, we find1

V ai = V1(r)εijkxjDak +
√

3
2
B(r)εijkΩjxkDa8 + V2(r)εijkxjddαβDaαΩβ

+V3(r)εijkxjD88Dak + V4(r)εijkxjddαβD8αDaβ + · · · . (7.6)

The first two terms may straightforwardly be identified from the second col-
umn in (5.48) when noting that Da8 → δa8 and V 8

i → V 0
i in the two-flavor re-

duction. The third term arises from the Wess–Zumino term and does not have
a two-flavor counterpart. The remaining contributions that are only partially
listed stem from flavor symmetry breaking terms in the chiral Lagrangian.
Essentially, this Skyrme model structure of the current is recovered in all soli-
ton models. However, the radial functions that are obtained from the soliton
profiles and eventually induced components differ substantially. For example,
in vector meson models, the V2 term also acquires contributions from the
εμνρσ terms in (4.66). We refer to the literature for the explicit expressions in
various models, cf. [3, 4].

Employing the tools of Appendix E, we find the momentum-dependent
magnetic form factor to be2

GBM(q2) = −8πMB

∫ ∞

0

r2dr
r

|q|j1(r|q|)
{

V1(r)〈De3〉B − 1
2α2

B(r)〈De8R8〉B

− 1
β2
V2(r)〈d3αβDeαRβ〉B + V3(r)〈D88De3〉B

+V4(r)〈d3αβDeαD8β〉B

}

. (7.7)

The subscript “e” refers to the electromagnetic combination of (7.3), while
“B” indicates the respective baryon matrix elements. They are to be com-
puted from the collective coordinate wave functions that diagonalize the
Hamiltonian, with SU(3) symmetry breaking included (6.26). The relevant
techniques are sketched in Appendix D. Note that the above identification of
the form factors is obtained in the Breit frame with p0 = p′0 and p = −p′ = q

2
for the momenta of the incoming and outgoing photons. This is suitable for
the (large-NC) soliton picture, as the target is assumed to be infinitely heavy
implying zero energy transfer. Recoil corrections stemming from MN < ∞
will be discussed below.

1 We impose the notation that doubled indices are summed with the ranges
i, j, k, . . . = 1, 2, 3 and α, β, γ, . . . = 4, . . . , 7.

2 According to the quantization rule, (6.8), angular velocities are replaced by the
SU(3) generators.
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Table 7.1. The Skyrme (Sk) [5] and vector meson (VM) [3] model predictions for
the magnetic moments of the spin- 1

2
baryons compared to experimental data. Also

shown are the ratios with resect to the proton magnetic moment

baryon p n Λ Σ+ Σ− Ξ0 Ξ− Σ0 → Λ

μ (Sk) 2.03 −1.58 −0.71 1.99 −0.79 −1.55 −0.64 −1.39
μ (VM) 2.36 −1.87 −0.60 2.41 −1.10 −1.96 −0.84 −1.74
μexp. 2.79 −1.91 −0.61 2.42 −1.16 −1.25 −0.69 −1.61
μ/μp (Sk) 1 −0.78 −0.35 0.98 −0.39 −0.76 −0.32 −0.68
μ/μp (VM) 1 −0.79 −0.25 1.02 −0.47 −0.83 −0.36 −0.74
(μ/μp)exp. 1 −0.68 −0.22 0.87 −0.42 −0.45 −0.25 −0.58

In Table 7.1, we summarize the results for the magnetic moments of the
low-lying spin- 1

2 baryons. As in the two-flavor model, cf. Sect. 5.4, the isovector
part of the magnetic moments is underestimated while the isoscalar part is
reasonably well reproduced. This is the case for both, the Skyrme model of
pseudoscalar fields only and its vector meson extension.

We recall from Sect. 4.7 that the vector meson model contains a parameter
(κ) that could not be determined from meson properties and argued that it
should be close to unity. The results shown in Table 7.1 have been obtained
with κ = 1.2. A significantly smaller (or even negative) value yields unac-
ceptable magnetic moments. On the other hand, even larger values spoil the
agreement for the baryon spectrum.

Despite the fact that the flavor symmetry breaking is large for the baryon
wave functions, the predicted magnetic moments do not strongly deviate from
the SU(3) relations [6]:

μΣ+ = μp , μΣ0 =
1
2
(μΣ+ + μΣ−) , μΣ− = μΞ− ,

2μΛ = −(μΣ+ + μΣ−) = −2μΣ0 = μn = μΞ0 =
2√
3
μΣ0Λ . (7.8)

Hence, a more elaborate treatment of the flavor symmetry breaking is nec-
essary to accommodate the experimentally observed details of breaking the
U -spin symmetry which, e.g., is reflected in the approximate equalities
μΣ+ ≈ μp and μΞ0 ≈ μn. In Sect. 6.5, we have already been acquainted with
the slow rotator approach that incorporates the symmetry breaking effects
onto the static soliton. In that quantization, the radial functions V1, . . . , V4

in (7.7) additionally depend on the strangeness changing angle ν, as do the
classical mass and the moments of inertia, cf. (6.36). Then the collective co-
ordinate parts of the matrix elements are of the form 〈V1(r, ν)De3〉B , etc.,
that can be numerically computed with the techniques provided in Sect. 6.5
and Appendix D. The numerical results of this slow rotator approach (SRA)
calculation [7] and those previously obtained in the rigid rotator approach
(RRA) are confronted to the experimental data in Table 7.2. Obviously, the
forces exerted by symmetry breaking upon the soliton are adequate to explain
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Table 7.2. Skyrme model predictions for the ratios of hyperon magnetic moments
in the rigid rotator (RRA) and slow rotator (SRA) approaches compared to exper-
imental data

baryon n Λ Σ+ Σ− Ξ0 Ξ− Σ0 → Λ

μ/μp (RRA) −0.78 −0.35 0.98 −0.39 −0.76 −0.32 −0.68
μ/μp (SRA) −0.83 −0.25 0.85 −0.40 −0.54 −0.20 −0.62
(μ/μp)exp. −0.68 −0.22 0.87 −0.42 −0.45 −0.25 −0.58

the observed violation from the U -spin symmetry for the hyperon magnetic
moments. The same conclusion can be drawn from an approach that intro-
duces a dynamical scale variable for the size of the soliton [8, 9]. This so-called
breathing mode quantization will be briefly discussed in Sects. 8.5 and 9.2.
For other applications of the SRA to electromagnetic properties of hyperons,
we refer to the literature [7, 10, 11].

We return to the RRA and similarly to (7.7); we find the electric form
factor by Fourier transforming the time component of the electromagnetic
current

GBE (q2) = 4π
∫ ∞

0

r2drj0(r|q|)
{√

3
2
B(r)〈De8〉B +

1
α2
V7(r)〈DeiRi〉B

+
1
β2
V8(r)〈DeαRα〉B

}
. (7.9)

The identities

4π
∫ ∞

0

r2dr V7(r) = α2 and 4π
∫ ∞

0

r2dr V7(r) = β2 (7.10)

ensure proper normalization of the electric charges because then GBE (0) =∑8
a=1〈DeaRa〉B = 〈Le〉B due to the constraint on R8 (6.8). In Fig. 7.1, we

compare the Skyrme model predictions for the momentum-dependent electric

0 0,2 0,4 0,6 0,8 1

(Q/GeV)2

0 0,2 0,4 0,6 0,8 1

(Q/GeV)2

0

0,2
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0
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Fig. 7.1. Skyrme model (with e = 4.0) prediction for the momentum-dependent
electric form factors of the proton (left) and neutron (right). The proton predic-
tion is compared to the dipole fit and the neutron to the Galster parameterization,
cf. (7.11). Data are from [12, 13, 14, 15, 16, 17, 18, 19, 20]
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form factors of the nucleon to empirical data. The latter are often presented
in the form of established parameterizations. With Q measured in GeV, the
standard dipole and Galster [21] parameterizations of the empirical form
factors are

Gp
D(Q2) =

1

(1 +Q2/0.71)2
and Gn

G(Q2) =
0.54Q2

1 + 1.54Q2
Gp

D(Q2)

(7.11)
for proton and neutron, respectively.

While the inclusion of strange degrees of freedom does little to the proton
form factor, the neutron form factor is strongly affected and acquires a signif-
icant reduction. This can be deduced from the neutron collective coordinate
matrix elements that enter (7.9). In case of exact flavor symmetry, they are

√
3

2
〈De8〉n =

1
10

〈DeiRi〉n = − 3
10

〈DeαRα〉n =
1
5
, (7.12)

while the SU(2) analogs are 1
2 ,−

1
2 and 0. When symmetry breaking is in-

cluded according to Sect. 6.4, the numerical values for these matrix elements
are somewhere in between those of (7.12) and the SU(2) ones. Hence, the
magnitude of the neutron electric form factor is noticeably reduced by SU(3)
effects. This is also noticed in the neutron electric radius, the slope of Gn

E. For
e = 4.0 is reduced (in magnitude) from −0.24 fm2 to −0.16 fm2 when gener-
alizing from two to three flavors. Strangeness degrees of freedom bring 〈rn2

E 〉
closer to the empirical value of (−0.116±0.002)fm2 [22]. In case of the proton,
this cancellation effect is less dramatic, after all then these three matrix ele-
ments always have to add to one. To be precise, they are 1

2 ,
1
2 and 0 for SU(2)

and 1
5 ,25 and 2

5 in exact SU(3). In the pseudoscalar model, the corresponding
radius is always predicted a bit on the low side, 〈rp2

E 〉 ≈ 0.55 fm2 compared
to 〈rp2

E 〉exp = (0.76± 0.01)fm2. This changes significantly when including vec-
tor meson fields. Typical predictions within these models are around 1 fm2,
both in SU(2) [23] and in SU(3) [3]. This can be easily understood without
going into the complicated details of the vector meson model calculation. In
the pseudoscalar model, the time component of the isoscalar part, V 0

0 (V 8
0

in SU(3)) of the electromagnetic current, is essentially given by the baryon
density, b(r), as is easily observed from (5.48). In simplified vector meson
models, the current field identity of the vector meson dominance picture [24]
holds. In the current context, it states that the isoscalar component of the
vector current is proportional to the ω–field. On the other hand, the baryon
current essentially acts as the source for the ω–field. In vector meson models,
V 0

0 therefore is subject to an equation of the form
(
∂2 −m2

ω

)
V 0

0 ∼ −m2
ωb(r) . (7.13)

Multiplying by x2 and integrating over space yields [25]
∫

d3xx2V 0
0 = 〈r2〉I=0 = 〈r2〉B +

6
m2
ρ

, (7.14)
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where 〈r2〉B is the radius of the baryon density that equals the isoscalar radius
in the pseudoscalar model. This clearly shows that vector meson effects cause
a sizable increase (6/m2

ρ ≈ 0.4 fm2) of the electromagnetic radii of baryons in
soliton models.

7.2 Relativistic Corrections

Using the techniques of Appendix E, we may extend the nucleon form factor
calculation to larger momenta by the transformation

GE(Q2) −→ γ−2nEQE

(
Q2

γ2

)
and GM(Q2) −→ γ−2nMQM

(
Q2

γ2

)
,

(7.15)
where γ2 = 1 + Q2

4M2
N

is the Lorentz boost factor. The result, (E.18), which
is based on the Lorentz boost, suggests to put nE = 0 and nM = 1. Before
discussing numerical results based on the transformation, (7.15), it is instruc-
tive to reflect on its nature. Most evidently, the momentum interval [0, 4M2

N ]
of the rest frame is mapped onto the space-like momenta in the Breit frame.
While small momenta are almost unaffected, the form factors at infinity in
the Breit frame are obtained from those in the rest frame at Q2 = 4M2

N . Even
though the latter may be small, there is no general reason for them to vanish.
In particular, this implies that the form factors do not match the empirical
dipole form (7.11) unless nE = nM ≥ 2. In contrast to the result from (E.18),
the values nE = nM ≥ 2 are also frequently adopted [26] because they are
strongly motivated by regarding the baryon as a cluster of particles whose
leading Fock component is a three-particle state [27, 28]. In any case, the
large Q2 behavior is not a profound model result but merely originates from
the boost prescription and thus mainly reflects the kinematical situation.

Numerical results are shown in Fig. 7.2. For those calculations, quite a
small Skyrme constant e = 3.5 was used. The magnetic form factors are nor-

0,01 0,1 1 10 100

Q2/GeV2 Q2/GeV2

0

0,5

1 Gp  /μpGDM

Gn  /μnGDM

μpG
p /Gp
E M

0,01 0,1 1 10
0

0,5

1

Fig. 7.2. Proton (left) and neutron (right) form factors computed in the SU(3)
Skyrme model as a function of momentum transfer after applying the boost (E.18).
Data are from [28, 29, 30, 31, 32, 33] (proton) and [34, 35, 36, 37, 38, 39, 40] (neutron)
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malized to the respective magnetic moments, which this calculation predicts
to be μp = 2.71 and μn = −2.30. This figure clearly demonstrates that soliton
models are able to reproduce the gross features of the empirical form factors.
The reader may consult [26] for a more thorough investigation in a vector me-
son soliton model that strongly supports this statement. The Lorentz boost,
(E.18), is crucial to gain that agreement. As explained in [26], the strong de-
crease of the ratio μpG

p
E(Q2)/Gp

M(Q2) then emerges naturally in chiral soliton
models as it basically stems from the isospin being generated from a rigid ro-
tation in flavor space.

7.3 Axial Charges and Hyperon Decays

We now turn to the discussion of matrix elements of the axial-vector current,
Aaμ in (7.1). These matrix elements are very interesting as they enter the
hadronic part of the low-energy effective current–current interaction for the
standard model. Hence, they are directly connected to semi-leptonic decays
of baryons, most prominently the neutron β-decay. Historically, their analysis
gave profound reason that flavor symmetry would be well reflected among the
hyperons.

Here we will concentrate on the octet components, a = 1, . . . , 8, and post-
pone a thorough study of the singlet component, A0

μ, to the next section. We
substitute the rotating hedgehog, (6.4), and find the spatial components to
be

Aai = [A1(r)δik +A2(r)x̂ix̂k]Dak + [A3(r)δik +A4(r)x̂ix̂k]dkαβDaαΩβ
+ [A5(r)δik +A6(r)x̂ix̂k]Da8Ωk + [A7(r)δik +A8(r)x̂ix̂k]Dak(D88 − 1)
+ [A9(r)δik +A10(r)x̂ix̂k] dkαβDaαD8β . (7.16)

Again, the radial functions A1(r), . . . , A10(r) contain the profile fields and
are thus model dependent. We refer to the literature [3, 25, 41] for explicit
expressions. It is interesting to note that in the two-flavor model only the A1

and A2 terms are present, cf. (5.50). Though the A3 and A4 terms have major
contributions from the vector meson profiles, they also have contributions
from the Wess–Zumino term [42] and are thus also present in the model with
only pseudoscalar mesons. On the other hand, the A5 and A6 terms vanish
in the latter model. The remaining terms stem from the symmetry breaking
part of the effective meson Lagrangian.

We define form factors as the covariant matrix elements

〈B′(p′)|Aaμ|B(p)〉 = u′(p′)
[
γμγ5G

BB′
A (q2) + γ5qμG̃

BB′
A (q2)

]
u(p). (7.17)

Here GA and G̃A are the main and induced axial form factors, respectively.
The involved baryons B and B′ select the pertinent octet components, e.g.,
the semi-leptonic Λ → N transition demands to choose a = 4 + i5. Again we
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compute these form factors by Fourier transformation of the soliton model
current, (7.16), in the Breit frame. We are mostly interested in the low-energy
properties of baryons and will not discuss the induced form factor G̃. The
main axial form factor describes the neutron β-decay which, upon isospin
invariance, is obtained as the proton matrix element of 2A3

3,

GA(q2) =
8πMN

E

∫
drr2

{[
j0(|q|r)A1(r) +

j1(|q|r)
|q|r A2(r)

]
〈D33〉p . . .

}
,

(7.18)
where E =

√
M2
N + p2 =

√
M2
N + (q/4)2. The ellipsis represents the matrix

element associated with the A3 . . . A10 components in (7.16). They are not
displayed because they are completely analogous in structure to the A1 and
A2 contributions. Even though |〈D33〉p| decreases from 1/3 in flavor SU(2)
to 7/30 in the symmetric case of SU(3), the axial charge of the nucleon,
gA = GA(0), does not significantly change when adding strange degrees of
freedom. There are two main reasons: (i) when symmetry breaking is properly
included, this matrix element tends toward its two-flavor limit3 and (ii) the
additional terms, in particular A3 and A4, make up major parts of the differ-
ence. To be specific, the SU(3) vector meson model of [3] predicts gA = 0.93.
Even though that model calculation is characterized by quite an extended
soliton (achieved by κ ≈ 1), and the axial charge is sensible to the soliton
size, it underestimates the empirical value (∼1.26) by more than a quarter.
The too-small prediction has always been a problem in chiral soliton models.
The situation seems a bit different for solitons in the NJL model that we
discussed in Chap. 3. As, e.g., is seen from (3.5), these approaches require
the evaluation of fermion functional determinants, which implies to arrange
products of operators according to their time ordering. In [43, 44], it has been
argued that this ordering prescription yields subleading (in 1/NC) contribu-
tions to gA that match the difference to the empirical data. However, there
is an inconsistency in that approach as there is no analog to this contribu-
tion in the equation of motion of the chiral field which would be needed to
comply with PCAC [45], even in the two-flavor reduction. We will therefore,
and also because it is technically involved, not discuss that analysis in further
detail.

In the context of the three-flavor soliton, the most interesting aspect of
the axial current matrix elements is their analysis in the framework of flavor
symmetry breaking because the various amplitudes favorably agree with pre-
dictions solely based on flavor SU(3) symmetry. Commonly, the gA/gV ratios
are considered in this context. We have already defined gA as the zero mo-
mentum transfer limit of GBB

′
A in (7.17). The vector current matrix elements

are computed from the appropriate flavor component V aμ similar to (7.4),
just that we have to consider different baryons in the initial and final states.
3 As a matter of fact and consistency, handling such matrix elements according to

the rules of Sect. 6.4 shows that they approach their SU(2) values for arbitrarily
large flavor symmetry breaking, when strange degrees of freedom are frozen.
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Table 7.3. The matrix elements of the axial-vector current between different baryon
states, gA, in the flavor symmetric limit. Displayed are both the strangeness con-
serving (upper part) and the strangeness changing (lower part) processes. The first
column gives the relevant flavor component of the axial current

n→ p Σ− → Λ Σ− → Σ0 Ξ− → Ξ0

Aπ−
F +D 2D/

√
6

√
2F D − F

Λ → p Σ− → n Ξ− → Λ Ξ− → Σ0

AK−
(3F +D)/

√
6 D − F (3F −D)/

√
6 (F +D)/

√
2

This generalizes the form factor GBE (Q2) to GBB
′

V (Q2). We obtain gV from
its Q2 → 0 limit.4 In the SU(3) symmetric case, the gV measure the SU(3)
charges and thus are directly expressed by Clebsch–Gordan coefficients. The
axial current itself carries octet quantum numbers, and there two ways to
couple it to the octet baryons via the Clebsch–Gordan series, cf. (6.28). By
SU(3) symmetry there are thus two independent coupling constants between
the axial current and the bilinear baryon operators. They are commonly called
F and D constants, and their coupling to the baryon operators is shown in
Table 7.3. If SU(3) were a good symmetry, the gA/gV ratios for six measured
semi-leptonic baryon decays must therefore be describable by only two param-
eters. And indeed, that is possible as can easily be observed from Table 7.4.
It is interesting to note that the dominating collective coordinate operators in
(7.16) (Dak and dkαβDαRβ) yield F/D = 5/9 when computed in the SU(3)
limit. This agrees with the empirical fit, cf. Table 7.4. From this point of
view, the reasoning of Sect. 6.4 that flavor symmetry might be strongly vi-
olated seems questionable. Yet, we will soon see that such a conclusion is
premature [50]. Two essential modifications arise for gA/gV from the inclu-
sion of symmetry breaking effects. First, the matrix elements of the vector
current at zero momentum transfer,

∫
d3rV

(a)
0 =

8∑

b=1

DabRb = La , (7.19)

Table 7.4. The measured values of gA/gV fitted by SU(3) relations with F +D =
1.26 and F/D = 0.58. Data are from [22, 46, 47, 48]; see also [49]

n→ p Λ → p Σ → n Ξ → Λ Ξ0 → Σ+ Σ → Λ

emp. 1.26 0.72 ± 0.02 0.34 ± 0.02 0.25 ± 0.05 1.29 ± 0.16 0.61 ± 0.02

F&D 1.26 0.73 ± 0.01 0.34 ± 0.03 0.19 ± 0.02 1.26 = gA(n→ p) 0.65 ± 0.01

4 For simplicity, we omit the superscripts B and B′ on gV and gA. The designated
baryon states should be obvious from the context.
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are no longer given by simple Clebsch–Gordan coefficients even though they
are still computed as matrix elements of SU(3) generators. The reason is
that the baryon states are no longer pure states that dwell in definite SU(3)
representations. As a consequence of the Ademollo–Gatto theorem [51], the
deviation from the Clebsch–Gordan coefficients is at least quadratic in the
symmetry breaking parameter, i.e., O(ω4) in the notation of Sect. 6.4. Never-
theless, this must not be small [52]. Second, the notion of F and D parameters
is strictly limited to the flavor symmetric case and there is no use for them
to parameterize the axial current matrix elements in the presence of flavor
symmetry breaking. In the soliton description, the effect of the derivative-
type symmetry breaking terms is mainly indirect. They provide the splitting
between the various decay constants and thus increase γ [53] since it is propor-
tional to f2

Km
2
K − f2

πm
2
π ≈ 1.5f2

π(m2
K −m2

π). Otherwise, the derivative-type
symmetry breaking terms are negligible. Hence symmetry breaking terms can
be omitted in the current operators and the non-singlet axial charge operator
is parameterized as (a = 1, . . . , 8, i = 1, 2, 3)

∫
d3rA

(a)
i = c1Dai − c2Da8Ri + c3

7∑

α,β=4

diαβDaαRβ . (7.20)

The coefficients ci are model-dependent functionals of the soliton profiles.
For the moment, we will treat them as free parameters. For ω2 → ∞ (in-
finitely heavy strange degrees of freedom), the strangeness contribution to
the nucleon axial charge should vanish. Noting that 〈N |D83|N〉 → 0 and
〈N |

∑7
α,β=4 d3αβD8αRβ|N〉 → 0 while 〈N |D88|N〉 → 1 for ω2 → ∞, we there-

fore demand
∫

d3rA
(0)
i = −2

√
3c2Ri with i = 1, 2, 3 , (7.21)

for the axial singlet current because it consistently causes the strangeness
projection, A(s)

i = (A(0)
i − 2

√
3A(8)

i )/3, to vanish when ω2 → ∞. Actually, all
model calculations in the literature [3, 54] satisfy this relation between singlet
and octet currents. The singlet current matrix element, �ΣB =

√
3c2, is the

quark spin contribution to the spin of the considered baryon, B. We will study
that quantity thoroughly in the following section. Here it suffices to note that
the empirical value for the nucleon matrix element �ΣN ≈ 0.20± 0.10 [55] is
insensitive to the strength of flavor symmetry breaking [56]. This suggests to
adjust c2 accordingly.

The values for gA and gV (only gA for Σ+ → Λe+νe) are obtained from
the matrix elements of the operators in (7.20) and (7.19), respectively, sand-
wiched between the eigenstates of the full Hamiltonian (6.26). We still have to
specify c1 and c3. As in [50], we determine these two parameters such that the
empirical nucleon axial charge and the gA/gV ratio for Λ → pe−ν̄e are repro-
duced at a prescribed strength of flavor symmetry breaking, say ω2

fix = 6.0.
Then we are not only left with predictions for the other decay parameters
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Fig. 7.3. The predicted decay parameters for the hyperon β-decays using ω2
fix = 6.0.

The errors originating from those in ΔΣN are indicated

but we can in particular study the variation with symmetry breaking. This
is shown in Fig. 7.3. The dependence on flavor symmetry breaking is very
moderate,5 and the results can be viewed as reasonably agreeing with the
empirical data, cf. Table 7.4. The observed independence of ω2 shows that
these predictions are not sensitive to the choice of ω2

fix. The two transitions,
n→ p and Λ → p, which are not shown in Fig. 7.3, exhibit a similar negligible
dependence on ω2. We therefore have a two-parameter (c1 and c3, c2 is fixed
from ΔΣN ) fit of the hyperon β-decays. Comparing the results in Fig. 7.3
with the data in Table 7.4, we see that the present calculation using strongly
distorted wave functions agrees equally well with the empirical data as the
flavor symmetric F&D fit. Stated otherwise, the possibility to fit the decay
parameters of hyperon decays in a flavor covariant manner is no proof for the
validity of flavor symmetry. In this context, it is worthwhile to remark that
lattice results are available for the gA/gV ratio of the Σ → n transition [57].
They are consistent with empirical data and, as in the above soliton model
study, they exhibit only minor changes when flavor symmetry breaking effects
are incorporated.

5 However, the individual matrix elements that enter the ratios gA/gV as factors of
the parameters ci vary strongly with ω2 [50].
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To complete the discussion of the octet axial currents, a general comment
on PCAC (2.55) in conjuction with the axial current, (7.16), is in order. Even if
the symmetry breaking contributions, A5, . . . , A10, were absent, PCAC is not
satisfied in the sense that ∂μAaμ = 0 in the chiral limit. As already mentioned
in Sect. 5.4, the equations of motion for the profile functions are equivalent to
this divergence equation. However, the equations of motion are solved classi-
cally only, i.e., in leading order of the 1/NC expansion. But in flavor SU(3),
the axial current contains pieces in A3 and A4 that are down by one order, at
least when nucleon matrix elements are taken.6 It is then obvious that away
from the chiral limit the right-hand side of ∂μAaμ cannot be identified as the
(interpolating) pseudoscalar field as suggested at the end of Sect. 5.4. This
questions computations of coupling constants for hadronic decays of baryon
resonances as matrix elements of the axial current (7.16). We will discuss that
matter exhaustively in Sect. 9.3. Here just remark that the resulting discrep-
ancy for gπNN from the Goldberger–Treimann relation was already observed
by Kanazawa [42]. As a solution to that problem, induced kaon fields were
introduced [53, 58] similar to what we have already discussed for the vector
meson model in Sect. 5.5. However, this is not the final word because double
counting problems emerge for the kaon fields. A comprehensive investigation
requires a thorough treatment of the rotation–vibration coupling for the kaon
fields, cf. Sect. 9.5.

7.4 Proton Spin Puzzle

The proton spin puzzle concerns the nucleon matrix element of the axial sin-
glet current, i.e., the coefficient c2 in (7.21). In the (non-relativistic) quark
model, this matrix element equals twice the contribution of the quark spin to
the total nucleon spin.7 It is not completely devious to assume that this gives
a guidance for the structure of the nucleon. Thus, a value of order unity is
expected for this matrix element. Yet this matrix element has been experimen-
tally determined to be considerably smaller. This suggests that the nucleon
structure is more complicated than assumed in the quark model picture. At
least for a short while that represented a puzzle.

There is an immediate problem that we face in the soliton model of only
pseudoscalar mesons. Straightforward evaluation from (7.1) shows that the
axial singlet current vanishes in the Skyrme model Lagrangian with U ∈
SU(3). This changes when kinetic symmetry breaking terms as in (6.22) are
included [59]:

6 One must be careful in this 1/NC counting because the matrix elements of Dai

and diαβDaαRβ have different NC dependences when evaluated between different
baryon states. This is particularly the case for members of the anti-decuplet,
Fig. 6.3, are concerned.

7 For a review, see [55].
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A(0)
μ =

√
3i
(
f2
K − f2

π

)
∂μ tr

[
λ8

(
U − U †)]+ · · · . (7.22)

This is a total derivative and hence its nucleon matrix element at zero momen-
tum transfer vanishes.8 This is a general issue in soliton models that are based
only on pseudoscalar degrees of freedom. The extension from U ∈ SU(3) to
U ∈ U(3) merely adds a contribution proportional to ∂μ [ln det(U)] to A(0)

μ .
There have been attempts to generate a non-zero axial singlet charge in such
models from higher derivative terms by choosing a favorable order for the col-
lective coordinate operators [61] or including terms in the effective Lagrangian
that are products of flavor traces [62] (rather than single traces) which are
suppressed in the large NC expansion. The quantization scheme in the former
approach is not consistent with G-parity constraints [56], and the additional
terms invented in the latter are actually generated from vector meson inter-
actions involving the Levi–Cevita tensor, εμνρσ, as suggested in (4.66). It is
more appealing to directly employ vector meson models because their inter-
action strength can be deduced from meson phenomenology, cf. Sect. 4.7, at
least partially. Already some time ago it has been noticed that even in a U(2)
approach, the εμνρσ terms in (4.66) provide the source terms for a singlet com-
ponent of the pseudoscalar mesons upon collective coordinate quantization of
the (iso)spin degrees of freedom [23, 63]. Exactly, these source terms recur
when separating the derivative of the flavor singlet component, η′, from the
current

A(0)
μ =

√
6fπ∂μη′ +A

(0)

μ , (7.23)

since the anomaly equation, ∂μA(0)
μ =

√
6fπm2

η′η
′, is the stationary condition

for η′. A non-trivial η′ thus implies a non-zero A
(0)

μ which in turn might yield
a non-zero axial singlet current matrix element at q2 = 0. Because of the
pseudoscalar nature, the η and/or η′ fields must be of the form η(r)x̂ · Ω,
where Ω is the angular velocity for the (iso)spin rotations, (5.16). Due to the
embedding of the static soliton in the isospin subgroup, (6.3), initially only
the non-strange component of η′ can get excited as long as neither SU(3) nor
U(1) symmetry breaking is included. We therefore parameterize the singlet
and octet η fields with two profile functions [1, 64]

η013 + η8λ8 =

⎛

⎝
ηT(r)x̂ ·Ω 12 0

0

0 0 ηS(r)x̂ · Ω

⎞

⎠ . (7.24)

These profile functions are obtained by a variational approach to the non-
strange moment of inertia, α2, together with the induced vector meson com-
ponents, (5.64). As a matter of fact, even the inclusion of SU(3) breaking
terms does not induce the strange component, ηS. For this to happen U(1),

8 This is at odds with the claims of [60] who merely estimated 〈A0
i 〉 from PCAC

rather than from a thorough calculation.
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breaking terms that involve powers and derivatives of the trace 2ηT + ηS are
required.

From the above consideration, it is obvious that a careful discussion of the
axial singlet current also requires a detailed investigation of the physics of the
η-mesons. This in particular concerns the mixing of the η and η′ mesons. Let
us begin this discussion by just listing two typical U(1) symmetry breaking
terms [

ln
(
det(U)/det(U †)

)]2
,
[
tr(U∂μU †)

]2
(7.25)

and refer to [1] for more details, especially for a thorough discussion on im-
plementing the UA(1) anomaly via an effective pseudoscalar ghost gluon field.
Nevertheless, a few general remarks on the mixing scenario as it emerges from
terms like those in (7.25) are worthwhile, also because the η mesons turn out
to be crucial for the proper description of the neutron–proton mass difference
under the inclusion of (small) isospin breaking as we will discuss in Sect. 7.6.
Early and standard textbook descriptions picture the mixing scenario by an
orthogonal transformation that is parameterized by a single mixing angle,
θ, cf. [65]. However, this is empirically insufficient [66], and a more general
transformation from the singlet (η1) and octet (η8) to the physical isoscalar
pseudoscalar mesons η and η′ must be effective. According to the singular
value decomposition theorem, we can write this transformation as

(
η0
η8

)
= S

(
η
η′

)
with S = R(θid)R(θ1)K̂−1/2R(θ2), (7.26)

where R(θ) are rotation matrices and K̂ is diagonal. The angle θid merely
describes the ideal mixing that transfers the non-strange component (ηT ∼
(uū + dd̄)/

√
2) and purely strange component (ηS ∼ ss̄) into the group the-

oretical basis η0 and η8. In [1], the entries of the parameterization in (7.26)
were determined by first writing down a general effective Lagrangian for the
η fields, including SU(3) and U(1) symmetry breaking, and expanding to
quadratic order in the η fields:

L(2)
η = −1

2
∂μ

(
ηT
ηS

)t

K∂μ
(
ηT
ηS

)
+

1
2

(
ηT
ηS

)t

M

(
ηT
ηS

)
, (7.27)

where K and M are real symmetric 2×2 matrices that contain three unknown
coupling constants. It is worth noting that the non-diagonal matrix elements
of K and M solely emerge from OZI violating contributions in the effective
meson Lagrangian. The θ1 rotations diagonalize K to K̂ and θ2 diagonalizes
M in the basis constructed from the original one by renormalization with
K̂−1/2. The four parameters θ1,2 and K̂1,2 are not independent but related by
their functional dependence on the three coupling constants. Nevertheless, it
was possible to reproduce the empirical data of four quantities: two masses of
the η’s and two widths for their decays into two photons. The latter is deter-
mined by the U(3) generalization of the computation that in Appendix C.4
is described for π0 → γγ. Substituting the so-determined coupling constants
yields
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θ1 = 7.4◦ , θ2 = 34.7◦ , K̂
1/2
1 = 1.07 , K̂

1/2
2 = 1.36 . (7.28)

Among other issues, a big ado, both in theory [67] and in experiment [68],
was later made of the fact that θ1 is quite small9 allowing the simplified
approximation S ∼ R(θid)K̂−1/2R(θ̃), but that might be purely accidental.

After this interlude on the physics of η mesons, we return to the discussion
of the axial singlet current. Following [1], we define axial form factors of the
nucleon for the flavor l = u, d, s via

√
p0p′0
MN

〈P (p′)|qlγμγ5ql|P (p)〉 =

u(p′)
[
γμγ5Hl(q2) +

iqμ
2MN

γ5H̃l(q2)
]
u(p) (7.29)

with qμ = pμ − p′μ. In this notation, we identify the difference gA = H1(0) −
H2(0) as the axial charge for neutron β-decay. The relevant quantity for the
axial singlet current is

H(q2) =
3∑

l=1

Hl(q2). (7.30)

Obviously, the first term in (7.23) only contributes to the induced form factor
H̃(q2) =

∑3
l=1 H̃l(q2). In the notation of Sect. 4.7, we find the non-derivative

piece A
(0)

μ to be

A
(0)

μ =
√

2εμνρσtr
{

2i
(γ1

3
+
γ2

2
)
pνpρRσ−

√
2gγ2F

νρ(ρ)Rσ − 2ig2(γ2 + 2γ3)RνRρRσ
}
. (7.31)

As for other axial charges,H(q2) is obtained from the spatial components. We
substitute the classical as well as the induced profile functions in the covariant
expression and find

A
(0)

i =
2√
3

[A5(r)Ωi +A6(r)x̂ix̂ ·Ω] . (7.32)

The radial functions, A5 and A6, have already been quoted in (7.16). Even
though the η meson profiles do not appear explicitly therein, they affect the
induced vector meson profiles (5.64) via the corresponding equations of mo-
tion. According to the quantization prescription for the collective coordinates,
(5.20), we have to replace the angular velocity by the spin operator when com-
puting matrix elements Ω → J/α2, with α2 the moment of inertia for spatial
rotations, cf. (5.65). Taking the proton polarization to be Sz = + 1

2 then yields

H(0) = ΣN =
√

3c2 =
4π√
3α2

∫ ∞

0

r2dr [3A5(r) +A6(r)] (7.33)

9 It simply reflects that OZI violation associated with derivatives of the η fields,
alike the second term in (7.25), is small.
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for the Fourier transformation of 3A(0)
i . This result holds in both the two- and

the three-flavor versions of the model and does not depend on the strength of
flavor symmetry breaking. It is the same for all spin-1

2 baryons. (Generally, the
quantization prescription Ω → J/α2 is contaminated by symmetry breaking;
so small variations are nevertheless possible.) Numerically the vector meson
models predict

ΣN = 0.30 ± 0.05, (7.34)

where the error has been estimated from the range of allowed parameters in the
effective vector meson Lagrangian. This agrees favorably with the empirical
data quoted in the previous section. In particular, it is significantly less than
one, the prediction of the non-relativistic quark model in which the axial
singlet matrix element equals twice the contribution to the proton spin that
is carried by the quarks spin. Certainly, this must be considered as one of
the major successes of soliton models. The above calculation shows that in
chiral soliton models significant efforts need to be taken to actually get a
small but non-zero result. Given the small experimental datum for ΣN , this
demonstrates that chiral symmetry is crucial for the nucleon structure.

7.5 Strangeness in the Nucleon

In a flavor symmetric world, the excitation of virtual strange and non-strange
quark anti-quark pairs is equally probable. In such a scenario, we actually
expect sizable effects of strange degrees of freedom in the nucleon. On the
other hand and as a consequence of the Appelquist–Carazzone theorem [69],
virtual strangeness excitations do not appear when the corresponding field
degrees of freedom are infinitely heavy. The latter scenario is realized in the
two-flavor reduction of chiral Lagrangians. Hence, we conclude that the effect
of strangeness in the nucleon depends on the effective size of flavor symme-
try breaking. We have already seen in Chap. 6 that the collective coordinate
quantization scheme allows us to treat flavor symmetry breaking as a vari-
able parameter in the form of ω2 = 3

2γβ
2, the product of explicit symme-

try breaking, cf. (6.25), and the moment of inertia for collective rotations of
the soliton into strangeness direction, cf. (6.7). In Sect. 7.3, we have made
ample use thereof to demonstrate that the phenomenological parameters of
semi-leptonic hyperon decays are essentially independent of the strength of
symmetry breaking and that those empirical data cannot be used to argue in
favor of a flavor symmetric world. In the context of that discussion, we did,
however, not discuss in detail the sensitivity of the nucleon matrix element of
the strange axial current, Δs = 〈N |A(s)

i |N〉 on ω2. That relation is displayed
in Fig. 7.4 in the same fashion as the other axial current matrix elements in
Sect. 7.3. Obviously, Δs shows a significantly stronger dependence on ω2 than
the matrix elements for the hyperon decays. The matrix element decreases
clearly as symmetry breaking grows. Of course, that is not unexpected as Δs
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Fig. 7.4. Dependence of nucleon matrix elements on the effective symmetry break-
ing ω2. Left panel: axial current; right panel: scalar s̄s as defined in (7.35). Note that
the ordinate does not start at zero

must vanish for infinite ω2. This result questions estimates of Δs that apply
SU(3) flavor symmetry relations to compute the nucleon matrix element of
A

(8)
i [60] and subsequently extract Δs from the measured value of ΔΣ. Such

procedures most likely overestimate Δs.
In Fig. 7.4, we also show the ω2 dependence of the (normalized) scalar

matrix element

XS =
〈p|s̄s|p〉 − 〈0|s̄s|0〉

〈p|ūu+ d̄d+ s̄s|p〉 − 〈0|ūu+ d̄d+ s̄s|0〉
=:

y

2 + y
. (7.35)

Here the state |0〉 refers to the soliton being absent and y = 2〈p|s̄s|p〉
〈p|ūu+d̄d|p〉 is

a definition often used within chiral perturbation theory; e.g., [70] estimated
y = 0.21±0.20 which translates intoXS = 0.10±0.08. This quantity has a wide
spectrum of interesting applications reaching from its contribution to the nu-
cleon σ-term in pion–nucleon scattering [71] to its influence on the neutralino-
nucleon cross-section [72] which, as indicated in supersymmetric approaches,
may be important for eventually detecting dark matter directly. Models for
the quark flavor dynamics, as, e.g., the one of Nambu–Jona–Lasinio, indicate
that in soliton models the matrix elements of quark bilinears q̄λaq should be
proportional to the matrix elements of tr

[
λa
(
U + U † − 2

)]
, cf. (2.28). Then

we straightforwardly get

XS =
1
3
〈p|1 −D88|p〉 ≈

7
30

− 43
2250

γβ2 + · · · , (7.36)

with the deviation from the flavor symmetric value (XS ≈ 0.233 [73]) in-
dicated. As for Δs, this scalar strangeness content decreases as symmetry
breaking increases. Such a significant reduction from the flavor symmetric
prediction is also needed to establish agreement with the above-quoted esti-
mate from chiral perturbation theory. However, the actual amount of deviation
from the symmetric limit is smaller than for the axial vector counterpart, Δs.

The three-flavor Skyrme model also provides a convenient way to study the
nucleon matrix elements of the vector current s̄γμs. They are theoretically
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interesting because they would vanish in a pure valence quark model of the nu-
cleon and so test finer details of nucleon structure. Experimentally, they can
be extracted from measurements of the parity violating asymmetry in the
elastic scattering of polarized electrons from the proton [74, 75, 76, 77]. The
strange vector form factors are defined as

〈P (p′)|qsγμqs|P (p)〉 = u(p′)
[
γμFs(q2) +

σμνq
ν

2Mp
F̃s(q2)

]
u(p) (7.37)

and have been estimated in various models. They range from vector–meson–
pole fits [78] of dispersion relations [29] through vector meson dominance
approaches [5] and kaon–loop calculations with [79] and without [80] vector
meson dominance contributions via constituent quark models [81] to soliton
model calculations [3, 5, 82, 83, 84]. The numerical results for the strange
magnetic moment μS = F̃s(0) ≈ −0.31 ± 0.09 . . . 0.25 are quite diverse. The
predictions for the strange charge radius r2S = −6dFs(q2)/dq2|q=0 are almost
equally scattered r2S ≈ −0.20 . . . 0.14 fm2.

In order to evaluate these form factors in the three-flavor Skyrme model,
one requires the matrix elements of the “strange” combination

Qs =
1
3
1− 1√

3
λ8 = Q0 − 2√

3
Q8 (7.38)

rather than the electromagnetic one (7.3) between proton states. Using the
same value e = 4.0 as used consistently for the three-flavor pseudoscalar model
yields the predictions

μS = −0.13n.m. and r2S = −0.10 fm2 . (7.39)

Here n.m. stands for nuclear magnetons. These results are obtained under
full recognition of flavor symmetry breaking in the collective coordinate wave
functions, cf. Sect. 6.4. If a pure octet wave function were employed to compute
the matrix elements of the collective operators, the strange magnetic moment
would have been μS = −0.33. The proper inclusion of symmetry breaking into
the nucleon wave function is again seen to reduce the effect of the strange
degrees of freedom in the nucleon. The vector meson model of [3] predicts an
even smaller (in magnitude) strange magnetic moment, μS ≈ −0.05n.m. So it
seems likely that this strange nucleon property may actually be compatible
with zero, a result supported by the latest (accurate) experiments [77].

7.6 Neutron–Proton Mass Difference

The neutron–proton mass difference is another famous problem whose solution
in the nucleon-as-soliton picture requires the addition of vector mesons to the
effective Lagrangian. We will find that major contributions to this difference



132 7 Baryon Properties

are integrals over the η-meson profiles, (7.24) that require vector meson fields
to be non-zero, cf. (7.23) and (7.31).

After correcting for the electromagnetic interaction (photon loop) the
remaining “strong” part of the neutron–proton mass difference should be
(Mn−Mp)strong ≈ (2.0±0.3)MeV [85]. At the quark level, this arises from the
down quark-up quark mass difference, m0,d −m0,u. So we have to generalize
(6.19) to account for (small) isospin breaking:

m̂0 =
m0,u +m0,d

3

(

1 +
√

3
2
λ8

)

+
m0,d −m0,u

2
λ3 +

m0,s

3

(
1 −

√
3λ8

)

∝ 2 + x(s)

3
1 + x(i)λ3 +

1 − x(s)

√
3

λ8 . (7.40)

In (6.22), we have estimated the strangeness symmetry breaking coefficient
from kaon and pion properties, x(s) =

(
f2
Km

2
K − f2

πm
2
π

)
/f2
πm

2
π. Similarly, we

gain the isospin parameter from investigating appropriate mass differences.
For example, the pseudoscalar sector predicts x(i) = mK (mK+ −mK0) /m2

π+
· · · , where contributions from derivative symmetry breakers in the effective
Lagrangian are not made explicit. Alternatively, one could use the ρ0−ω mass
difference in the vector meson model. These approaches agree in predicting
x(i) = −0.4 · · · − 0.2 [1].

To understand the problem, it is helpful to consider the contribution of the
dominating mass-type symmetry breaker to the neutron–proton mass differ-
ence. Since the d–u quark mass difference clearly exists with only two flavors,
it is interesting to first consider the problem at this level. The relevant term
is proportional to

tr
[
τ3
(
U + U †)] . (7.41)

From (7.24), we see that U = exp(iηT(x)) [cos(F ) + ix̂ · τ sin(F )] in the two-
flavor reduction. Hence, the expression (7.41) is proportional to sin(ηT). In
other words, the contribution vanishes unless the field ηT gets excited due
to the collective rotation (or any kind of symmetry breaking). The discus-
sion around (7.23) shows that this will not happen if only pseudoscalars are
present in the effective Lagrangian; the vector meson contribution A

(0)

μ must
also be present. This is analogous to just discussed proton spin puzzle. The
contribution of the mass-type symmetry breaking term turns out to be

(Mn −Mp)strong = −8x(i)f2
πm

2
π

3α2

∫
d3r sin F (r)ηT(r) + · · · , (7.42)

where only the contribution linear in the angular velocity (Ω) is kept. Its
nucleon matrix element has been evaluated according to the rules of Sect. 5.3,
as the appearance of the moment of inertia, α2, suggests. Using the full two-
flavor vector meson result for A

(0)

μ which was already employed to compute
the axial singlet matrix element yields [1, 86]
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Δ = (Mn −Mp)strong ≈ 1.4 MeV . (7.43)

Not surprisingly, this numerical result turns out to be about as robust against
(permitted) changes of the parameters as is H(0). In any event, the induced
η profile function enters crucially and thus the above result is sensitive to the
η − η′ mixing scenario described above. Nevertheless, the prediction, (7.43), is
still somewhat too small when compared to the empirical value. It turns out
that the missing ∼ 0.5MeV can be attributed to three flavor effects that we will
discuss next. They are already present at the classical level. Straightforward
substitution of the collectively rotating hedgehog configuration, (6.4), yields

Eq. (7.41) =
4√
3
D38 (cosF − 1) . (7.44)

For finite symmetry breaking ω2 < ∞, the nucleon matrix element of D38

is non-zero and hence there is a contribution to the neutron proton matrix
element

ΔSU(3) = Γ3 (〈n|D38|n〉 − 〈p|D38|p〉) (7.45)

with

Γ3 =
4πx(i)m2

πf
2
π√

3

∫ ∞

0

drr2 {(1 − cosF ) . . .} , (7.46)

where contributions from the derivative-type symmetry breaker and vector
mesons are not listed explicitly.10 Typical values for the functional Γ3 turn
out to be around −15 MeV [1]. The collective coordinate matrix element in
(7.45) gives 〈N |D38|N〉 = I3

5
√

3
when SU(3) symmetric nucleon wave func-

tions are substituted, where I3 = ± 1
2 is the nucleon isospin projection. This

corresponds to Γ3 ≈ 1.7 MeV. Together with the two-flavor result, (7.43),
this would overestimate the empirical value considerably. However, we have
already seen that collective coordinate matrix elements may considerably de-
viate from their flavor symmetric values. This is particularly the case for D38,
as shown in Fig. 7.5. For the realistic symmetry breaking ω2 ≈ 6, this matrix
element is reduced to a about a third of the above mentioned symmetric value.
Hence, the SU(3) contribution to the neutron–proton mass difference is only
of the order of 0.5 MeV. Together with the dominating two-flavor contribution
this adds to about 2 MeV, exactly what is expected for the strong interaction
part of Mn −Mp.

As an interim conclusion, we realize that the axial singlet current matrix
element as well as the neutron–proton mass difference pinpoints shortcomings
of the original Skyrme model with only pseudoscalar degrees of freedom. How-
ever, they are not general problems of chiral soliton models as they can be
nicely solved by appropriate extensions of the effective meson action. Here we

10 In addition, the full three-flavor result embodies other collective coordinate oper-
ators than the one shown in (7.45), as, e.g.,

∑3
i=1D3iD8i. The detailed discussion

is given in [1].
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Fig. 7.5. Dependence of proton matrix element 〈p|D38|p〉 on the effective symmetry
breaking ω2. The displayed matrix element is normalized to the result at ω2 = 0

have extensively discussed the vector meson scenario. References [56, 86, 87]
show that extensions by chiral quarks as in the NJL model, cf. Chap. 3, do a
similar job.

7.7 Nucleon Structure Functions

So far we have considered baryon properties that can be computed in any
chiral soliton model with more or less success and agreement between predic-
tions and empirical data. We will now consider a particular set of properties
for which this does not seem to be true. Structure functions parameterize
hadron properties in deep inelastic scattering (DIS). In (perturbative) QCD,
these functions are matrix elements of bilinear quark operators that are also
bilocal. Thus, it seems plausible that models based on a meson action cannot
account for such matrix elements because then the field degrees of freedom
represent local bilinear quark operators. Many of the computations [88, 89]11

essentially identify the quark operators of chiral quark models (as those dis-
cussed in Chap. 3) with those in the DIS matrix elements. The latter actually
refer to the field degrees of freedom in perturbative QCD, and thus this iden-
tification seems a bit ad hoc. We will therefore concentrate on approaches
that only require the QCD chiral symmetries to be identified in the consid-
ered chiral quark model. After all, DIS refers to photon nucleon reactions in

11 See [90, 91, 92] for more recent discussions and exhaustive lists of further refer-
ences.
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a certain kinematical regime. Thus, DIS properties must be computable from
appropriate matrix elements of the electromagnetic current, which is one of
the symmetry currents in chiral models. As a matter of fact, this weaker
identification was used in the first computations of nucleon structure func-
tions in [93, 94, 95]. The approach builds up from virtual Compton scattering
at large momentum transfer. Hence, it requires to consider the two-photon
coupling to the nucleon in chiral quark models in the respective kinematical
regime [96]. We will first discuss pion structure functions in the chiral quark
model of Sect. 2.3 to set up the approach and proceed with investigating
some of the nucleon structure functions. A comprehensive discussion on chiral
quark model computations for nucleon structure functions is beyond the scope
of this monograph and we rather refer to the research articles quoted above
and in footnote 11.

We are actually interested in the absorptive (i.e., imaginary) part of the
forward virtual Compton amplitude. In order to properly identify this imag-
inary part, it is most appropriate to explore the chiral quark model, that we
considered earlier in Euclidean space, in Minkowski space. This is actually
straightforward and leads to the regularized action functional [96, 97]

−i TrΛlog [i∂/ − (S + iγ5P )] = −i
NC

2

2∑

n=0

cnTr log
[
−DD5 + Λ2

n − iε
]

−i
NC

2
Tr log

[
−D (D5)

−1 − iε
]
, (7.47)

with

iD = i∂/− (S + iγ5P ) and iD5 = −i∂/− (S − iγ5P ) . (7.48)

These definitions replace (2.16) and (2.17) in the case that only scalar (S)
and pseudoscalar (P ) quark bilinear fields are considered. We have switched
to the Pauli–Villars (PV) regularization scheme for the anomaly free part
of the action. The anomalous part is (conditionally) finite and does not get
regularized. The choice c0 = 1, Λ0 = 0,

∑2
n=0 cn = 0 renders the functional

finite and formally reproduces the action listed in (2.15) when the cut-offs
Λ1,2 approach infinity. We may also employ the chiral circle condition, (2.20),
for M = S + iP . Then (7.47) exhibits only a logarithmic divergence and a
single subtraction is sufficient. The reason for modifying the regularization
prescription will soon become more obvious.

As in the proper time scheme, the PV-regularization parameters are de-
termined to reproduce meson properties. In the PV scheme, the gap equa-
tion (2.18) reads

1
2G

(m−m0) = 4iNCm
2∑

n=0

cn

∫
d4k

(2π)4
[
k2 −m2 − Λ2

n + iε
]−1

. (7.49)
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Defining the polarization function

Π(q2, x) =
2∑

n=0

cn
d4k

(2π)4i
[
k2 + x(1 − x)m2

π −m2 − Λ2
n + iε

]−2
, (7.50)

the (on-shell) pion decay constant becomes

fπ = 4NCmg

∫ 1

0

dxΠ(m2
π , x) . (7.51)

The pole and unit residue of the pion propagator implicitly relate the pion
mass and meson–quark coupling constant to the model parameters:

m0 = 4NCmGm2
π

∫ 1

0

dxΠ(m2
π , x) ,

1
g2

= 4NC
d

dm2
π

∫ 1

0

dx
[
m2
πΠ(m2

π, x)
]
. (7.52)

These equations replace (2.22), (2.23) and (2.24) from the proper-time regu-
larization scheme.

DIS off hadrons is parameterized by the hadronic tensor Wμν(p, q). Here
q is the momentum transmitted from the photon to the hadron with momen-
tum p. The tensor Wμν(p, q) is obtained from the hadron matrix element of
the current commutator by the Fourier transformation12

Wμν(p, q) =
1
4π

∫
d4x eiq·ξ 〈p, s|[Jμ(ξ), J†

ν (0)]|p, s〉 . (7.53)

Subsequently, Wμν(p, q) is parameterized in terms of form factors that mul-
tiply the allowed Lorentz structures. These form factors are extracted by
pertinent projection of the hadronic tensor. Finally, the structure functions
are the leading terms of the twist expansion13 for the form factors. These
contributions are obtained from computing Wμν(p, q) in the Bjorken limit:
Q2 = −q2 → ∞ with the Bjorken variable x = Q2/p · q fixed. That is, sub-
leading contributions in 1/Q2 are omitted.

An essential feature of bosonized quark models is that the derivative term
in (7.48) is formally identical to that of a non-interacting (or asymptotically
free) quark model. In the framework of DIS studies, chiral quark models are
therefore favored over models that are directly formulated in meson field vari-
ables.14 More explicitly, the vector current operator is given as Jμ = q̄Qγμq,
12 Eventually, the spin of the hadron is called s. For simplicity, we do not make

explicit the flavor labels on Jμ.
13 Roughly spoken, twist refers to the expansion of the structure functions in inverse

powers of the momentum Q2[98].
14 See, however, [99] for an early attempt to compute structure functions in the

Skyrme model.
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with Q a flavor matrix in chiral quark models. Expectation values of currents
are conveniently computed by introducing pertinent sources vμ in (7.48)

iD −→ iD + Qv/ and iD5 −→ iD5 −Qv/ (7.54)

and differentiating the so-gauged action (7.48) with respect to vμ. In bosonized
quark models, it is convenient to identify Wμν(p, q) from the absorptive part

Wμν(p, q) =
1
2π

Im [T μν(p, q)] (7.55)

of the forward virtual Compton amplitude

T μν(p, q) =
∫

d4ξ eiq·ξ 〈p, s|T (Jμ(ξ)Jν(0)) |p, s〉 (7.56)

because the time-ordered product is straightforwardly obtained from

T (Jμ(ξ)Jν(0)) =
δ2

δvμ(ξ) δvν(0)
TrΛlog [i∂/− (S + iγ5P ) + Q v/]

∣∣
∣
vμ=0

,

(7.57)
as defined from (7.48) with the substitution (7.54).

We compute the pion–photon scattering amplitude by expanding (7.48)
to second order in both π and vμ. From this term, we read off the single
structure function, F (x), that characterizes pion-DIS. Due to the separation
into D and D5, this calculation differs considerably from the simple evaluation
of the “handbag” diagram. For example, isospin violating and dimension-five
operators appear for the action (7.48). Fortunately, all isospin violating pieces
cancel yielding

F (x) =
5
9
(4NCg

2)
d

dm2
π

[
m2
πΠ(m2

π, x)
]
, 0 ≤ x ≤ 1 . (7.58)

It appears to be a fortuitousness that the same result is obtained by a formal
treatment of the divergent handbag diagram and ad hoc regularization[100].
The cancellation of the isospin violating pieces is a feature of the Bjorken
limit: insertions of the pion field on the propagator that carries the infinitely
large photon momentum can be safely omitted. Furthermore, this propagator
can be taken to be the one for non-interacting massless fermions. This implies
that also the Pauli–Villars cut-offs can be omitted for this propagator. That,
in turn, leads to the desired scaling behavior of the structure function in this
model and is a particular feature of the Pauli–Villars regularization. A priori
it is not obvious for an arbitrary regularization scheme that terms of the form
Q2/Λ2

n drop out in the Bjorken limit.
From (7.52) and (7.58), it is obvious that F (x) = 5/9 for 0 ≤ x ≤ 1 in the

chiral limit (mπ = 0). We note that this is the structure function at the (low)
energy scale of the model. To compare with empirical data that are at a higher
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energy scale, the DGLAP15 program of perturbative QCD has to be applied
onto F (x) to incorporate the leading ln Q2 corrections. Such studies [103, 104]
show good agreement with the experimental data for F (x).

DIS off nucleons is described by four structure functions: F1(x) and F2(x)
are insensitive to the nucleon spin, while the polarized structure functions,
g1(x) and g2(x), multiply Lorentz structures that contain the nucleon spin. An
important consequence of the formal identity between the current operators
in the model and in QCD is that the Callan–Gross relation F2(x) = 2xF1(x)
that originally identified the charged partons as spin- 1

2 particles is reproduced
in this soliton model.

We will now outline the model calculation of structure functions. As argued
in the context of the pion structure function, the quark propagator with the
(infinitely) large photon momentum should be taken to be the one for free
and massless fermions. Thus, it is sufficient to differentiate (Here D and D5

are those of (7.48), i.e., with vμ = 0.)

NC

4i

2∑

n=0

cnTr
{(

−DD5 + Λ2
n

)−1
[
Q2v/ (∂/)−1

v/D5 − D(v/ (∂/)−1
v/)5Q2

]}

+
NC

4i
Tr
{

(−DD5)
−1
[
Q2v/ (∂/)−1 v/D5 + D(v/ (∂/)−1 v/)5Q2

]}
, (7.59)

with respect to the photon field vμ. The (. . .)5 description

γμγργν = Sμρνσγ
σ − iεμρνσγσγ5 , (γμγργν)5 = Sμρνσγ

σ + iεμρνσγσγ5,
(7.60)

accounts for the unconventional appearance of axial sources in D5, cf. [96].
Substituting (5.13) for the meson fields16 in D and D5, computing the func-
tional trace up to subleading order in 1/NC in the basis {Ψα(x)} that diago-
nalizes the Dirac–Hamiltonian (3.23) yields the model results for the structure
functions. The detailed formulas are listed in [96], so is the verification of the
sum rules that relate static nucleon properties to integrals of the structure
functions over the Bjorken variable x. As an example, we display the isovec-
tor contribution to g1(x) which in leading order 1/NC reads

g1(x) =
MNNC

36i

〈
N
∣
∣
∣I3
∣
∣
∣N
〉∫ dω

2π

∑

α

∫
d3ξ

∫
dλ
2π

eiMNxλ

×
(

2∑

n=0

cn (ω + εα)
ω2 − ε2α − Λ2

n + iε

)

P

[
Ψ†
α(ξ )τ3 (1 − α3) γ5Ψα(ξ +λê3)e−iωλ

15 These are non-local, linear differential equations for the structure functions that
sum the logarithmic corrections in Q2 which arise from absorption and emission
of gluons and quarks. The coefficient functionals, the so-called splitting functions,
can be computed in perturbative QCD and we refer to standard textbooks [98,
101, 102] for more details.

16 In the context of nucleon structure functions, we only consider two flavor degrees
of freedom. The three-flavor case is e.g., discussed in [105].
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+ Ψ†
α(ξ)τ3 (1 − α3) γ5Ψα(ξ−λê3)eiωλ

]
. (7.61)

Here the subscript (P) indicates the pole term that is to be computed
according to Cutkosky’s rules. This essentially takes care of the frequency (ω)
integration. The two quark bilinears in the squared brackets emerge from the
two orders in which the functional derivatives in (7.57) act. In the diagram-
matic language, these two terms reflect forward and backward propagating
quarks.

To verify sum rules, observe that an x-integration yields δ(λ) and thus
renders the quark bilinears local.

There is one peculiarity that is thoroughly worked out in [96] and worth
to be briefly noted here. The structure function that enters the Gottfried sum
rule for the unpolarized structure function is related to the γ5-odd piece of the
action and hence does not undergo regularization. This is surprising because in
the parton model this structure function differs from the one associated with
the Adler sum rule (observed in neutrino proton DIS) only by the sign of the
anti-quark distribution. In the present model, however, this structure function
gets regularized, in agreement with the quantization rule for the collective
coordinates for the isospin orientation that involves the regularized moment
of inertia, α2. This is the technical reason for this unexpected difference: for
the isovector contribution associated with the backward propagating quark,
the exchanges of a photon and a charged left-handed gauge boson in neutrino
scattering come with opposite signs. In turn that selects different pieces from
(7.59). Yet, it is sensitive to commence the model calculation of structure
functions from a fully regularized action for the interaction with gauge bosons.
Merely identifying QCD quark bilinears within the model does not reveal this
peculiarity.

Unfortunately, numerical results for the full structure functions in the dou-
ble Pauli–Villars regularization scheme, i.e., including the properly regular-
ized vacuum piece are not yet available. Once the self-consistent soliton is
substituted, the axial charges are saturated to 95% or even more by their va-
lence quark contributions (the strongly bound level in the soliton background,
cf. Fig. 3.2). This provides sufficient justification to consider its contribution
to the polarized structure functions as a reliable approximation since, e.g.,
the sum rule for the leading polarized structure function is nothing but the
axial current matrix element,

∫ 1

0 dxg1(x) = cgA, with c being a numerical
constant determined by the quark charges. Technically, this approximation
corresponds to replacing the quarks levels in (7.61) by the cranked valence
level of (5.68), omitting the regularization parameters as well as the sum over
α. As already stressed, this level is defined within the chiral soliton model,
(5.68), and its contributions to the structure functions should not at all be
confused with valence quark distributions in parton models. In general, these
model calculations yield structure functions that parameterize the hadronic
tensor, but not (anti)-quark distributions. The latter would require the iden-
tification of model degrees of freedom with those in QCD. However, here only
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the symmetries (namely the chiral symmetry) and thus the current operators
in the hadronic tensor are identified.

As in the case for the pion, the model calculation yields the nucleon struc-
ture function at a low-energy scale and ln Q2 corrections must be accounted
for. Another obstacle arises because the soliton is a localized object. Thus,
the computed structure functions are frame-dependent and one frame has to
be picked. The appropriate choice is the infinite momentum frame (IMF) not
only because it makes contact with the parton model but also because in this
frame the support of the structure functions is limited to the physical regime
0 ≤ x ≤ 1. Choosing the IMF amounts to the transformation [106, 107]

fIMF(x) =
1

1 − x
fRF(−ln(1 − x)) , (7.62)

where fRF(x) denotes the structure function as computed in the nucleon rest
frame. So, even after the soliton model structure function has been worked
out, a two-stage program must be conducted: first the transformation to the
IMF according to (7.62) and subsequently the DGLAP evolution program17 to
incorporate the resumed ln Q2 corrections. In the current context, it is appro-
priate to restrain oneself to the leading order (in αs) in the evolution program
because higher orders require the identification of quark and anti-quark distri-
butions in the parton model sense. This does not seem possible without further
assumptions.18 The low-energy scale, Q2

0 = 0.4 GeV2, at which the model is
assumed to approximate QCD has been estimated in [93, 94, 95] from a best
fit to the experimental data of the unpolarized structure function, F2(x). The
same boundary value is taken to evolve the model prediction for polarized
structure function, g1(x), in the IMF to the scale Q2 ∼ 4 . . . 10 GeV2 at which
the experimental data are available. For the structure function g2(x), the sit-
uation is a bit more complicated. First the twist-2 piece must be separated
according to [109]

gWW
2 (x) = −g1(x) +

∫ 1

x

dy
y
g1(y) (7.63)

and evolved analogously to g1(x) (which also is twist-2). The remainder,
g2(x) − gWW

2 (x), is twist-3 and is evolved according to the large NC scheme
of [110]. Finally, the two pieces are again put together at the endpoint of the
evolution, Q2. In Fig. 7.6, the model predictions for the linearly independent
polarized structure functions of the proton are confronted with the experi-
mental data from [111]. Obviously, the model reproduces the gross features
of the data. Figure 7.7 compares the model predictions for g2 of both the
proton and the neutron (in form of the deuteron) not only to the recently ac-
cumulated data but also to other model predictions. Surprisingly, the twist-2
17 In addition to footnote 15, we refer to [108] for the splitting functions that concern

the polarized nucleon structure functions.
18 We assume, however, that the gluon distribution is zero at the model scale.
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Fig. 7.8. Model prediction for AN
1 at different Q2. The right panel shows various

experimental data [116]. Most recent (and precise) JLab data are labeled E99–117

truncation, i.e., (7.63) with the data for g1(x) at the right-hand side, gives
the most accurate description of the data. However, also the chiral soliton
model predictions reproduce the data well. Bag model predictions have a less
pronounced structure.

Recently, precise data [116] have become available for the neutron asym-
metry

A1 =
g1(x,Q2) − 4M2x2

Q2 g2(x,Q2)

F1(x,Q2)
. (7.64)

It is therefore challenging to study this quantity in the present model. As sub-
leading twist contributions are omitted, this amounts to computing the ratio
g1(x,Q2)/F1(x,Q2) for the neutron. The resulting ratio is shown in Fig.7.8
together with data. It is interesting to note that while the ratio at the model
scale, Q0, becomes large and negative at small x, the DGLAP evolution causes
it to bend around so that it actually tends to zero as x → 0. This behavior
is also observed from the data, as is the change in sign at moderate x. The
position (x ≈ 0.25) at which this change occurs seems somewhat lower than
the preliminary JLab-data [116] suggest and also appears to be insensitive to
the endpoint of evolution. Once evolution has set in at a moderate point Q2,
the evolution to even higher Q2 has insignificant effect.

Though the studies discussed in this section represent an interesting appli-
cation of the chiral quark soliton model, the ultimate goal is the investigation
of nucleon structure functions in any chiral soliton model without reference to
any underlying quark flavor dynamics. In particular, it is challenging to repro-
duce the Callan–Gross relation from the Wess–Zumino term which, according
to Chap. 6, dictates the fermion nature of the soliton.
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8

Meson–Baryon Scattering in Chiral Soliton
Models

In this chapter we will discuss approaches to describe meson–baryon scattering
in soliton models. Here we will concentrate on the two-flavor description and
leave an important SU(3) application to Sect. 9.5. Although this subject is
very interesting and challenging because it deals with properties of baryon
resonances, we will concise ourselves and only sketch the main ideas. We will
quickly observe that most of the computations are very involved: We require
not only the quantization of the classical soliton field configuration but also
the small amplitude fluctuations about it. The reader may get an impression
of that formidable task from the appendices of [1].

The first important observation is that soliton models contain both the
meson and baryon degrees of freedom in terms of meson fields. While mesons
are the fundamental fields, baryons emerge as soliton configurations and we
may investigate meson–baryon interactions by considering small amplitude
fluctuations about the soliton. Only in a limited number of soliton models
such calculations have been performed exhaustively, i.e., for arbitrary angular
momentum of the fluctuations. In vector meson models the computation is
inflated by the number of field components involved [1, 2]. In chiral quark
models it gets out of hand because the fluctuations couple quark modes of
different grand spins, that are displayed in (3.20) and (3.21); the larger the
angular momentum of the fluctuations, the more grand spins are affected.
For that reason only fluctuations with low angular momenta have been stud-
ied in chiral quark models [3]. As we will see in the course of this chapter
this is insufficient to make concrete statements about physical meson–baryon
scattering.

In terms of the chiral field the most suggestive parameterization for the
fluctuations about the soliton is [4, 5]1

1 For calculational purposes it is sometimes more appropriate to introduce the
fluctuations of pseudoscalar mesons as chiral rotations of the soliton U(x, t) =
A exp [iη(x, t)/2] exp [iτ · x̂F (r)] exp [iη(x, t)/2] A†. Different parameterizations
yield the same scattering matrix as the single particle spectrum is unchanged in
the asymptotic regime [6].
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U(x, t) = A exp [iτ · x̂F (r) + iη(x, t)] A† , (8.1)

where A represents the collective coordinates that describes the flavor ori-
entation of the meson–baryon system. Obviously, η(x, t) is matrix valued in
flavor space. The generalization to fluctuations about vector meson type soli-
ton configurations is straightforward but tedious [1]. Since η(x, t) collectively
co-rotates with the soliton in flavor space it defines fluctuations in the intrinsic
(or body-fixed) frame. The laboratory fluctuations are A(t)η(x, t)A†(t).

A severe problem arises because modes for the flavor orientation of the
soliton are contained in both the small amplitude fluctuations η and the col-
lective coordinates A. In general, constraints must be implemented that avoid
double counting and that allow us to quantize the system.

8.1 Adiabatic Approximation

The adiabatic approximation is defined by taking the collective coordinates in
(8.1) to be time independent, i.e., Ȧ = 0. In that case they are not dynamical
degrees of freedom and the double counting problem does not arise. This is
also reflected by the fact that time-independent collective coordinates do not
couple to the fluctuations, at least in a flavor symmetric model.

It is quite tedious but nevertheless straightforward to expand the action
function of the given chiral model to quadratic order in the fluctuations. Since
the soliton is a stationary configuration, the term of linear order vanishes and
we may generally write [1, 5]

L = Ecl +
1
2

∫
d3r [η̇i(x, t)Mij(x)η̇j(x, t) − ηi(x, t)Vij(x)ηj(x, t)] . (8.2)

Here Mij and Vij are metric and potential matrices, respectively. Their spatial
dependences arise from the background soliton, as, e.g., Mij(x) = Mij(U0(x))
in the Skyrme model. Note that Vij(x) contains differential operators that act
on ηj(x, t), the components of the matrix η(x, t) when expanded in the N2

f −1
Pauli or Gell–Mann matrices. The Euler–Lagrange equations

Mij(x)η̈j(x, t) + Vij(x)ηj(x, t) = 0 (8.3)

reduce to Klein–Gordon equations asymptotically, i.e., |x| → ∞: Mij(x) →
M

(0)
ij = δij and Vij(x) → V

(0)
ij = m2

i δij , where mi are meson masses. Upon
Fourier decomposition, ηi(x, t) → ηi(x, ω)exp(iωt), no imaginary frequency
solutions (Im(ω) �= 0) have been found in all soliton models considered. This
is important because it establishes that the hedgehog configuration minimizes
the action functional, at least locally in functional space.

A general remark on the adiabatic approximation is in order. To identify
the fluctuations about the soliton as single particle states, the wave function
must be scaled by a factor fπ, as in the discussion of (2.41). Hence the ex-
pansion in η actually is an expansion in 1/NC. If the collective rotations were
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considered dynamical degrees they could, at least formally, be compensated by
higher orders in the fluctuations. Thus the adiabatic approximation is exact
at next to leading order in the 1/NC expansion, which is N0

C.
We will now concentrate on pion baryon scattering in the two-flavor model.

We notice again that the soliton itself is invariant under combined spin and
flavor rotations. This invariance is manifested for the fluctuations as follows:
There exists a generalized angular momentum, the grand spin

G = J + I (8.4)

that is the vector sum of the fluctuations of total spin (J) and isospin (I).
In general, the former is the vector sum of angular momentum and spin,
J = L + S. When decomposing the fluctuations with respect to grand spin

ηj(x, ω) =
∑

GJM

ηGJ(r, ω) [Y GJM (x̂)]j , (8.5)

the differential equations for the fluctuations decouple in the grand spin quan-
tum number G and do not contain its projection quantum number (M) ex-
plicitly. The vector spherical harmonic function Y GJM (x̂) in (8.5) arises from
coupling total angular momentum J and isospin (I = 1)

Y GJM (x̂) =
∑

mν

CGMJm,1νYJm(x̂)et3 (8.6)

to G. Of course, as long as we only consider pseudoscalar fields the total
angular momentum equals the orbital angular momentum L of the fluctuations
and the coupling induces the selection rules G = L± 1, L. Since parity is also
conserved, the fluctuations further decouple into magnetic modes with G = L
and electric modes with G = L ± 1. Finally standard potential scattering
methods [7, 8] may be employed to compute the corresponding elements of the
scattering matrix, S̃G,L,L′, which is the so-called intrinsic S-matrix because
it refers to scattering in the body-fixed frame. For the magnetic modes this
is just the phase shift S̃G,G,G = e2iδG,G,G but a 2 × 2 matrix for the electric
modes. (Computational techniques are explained in Appendix F.) To obtain
the S-matrix in the laboratory frame from S̃ we have to project onto physical
channels. So far we have considered the scattering of spinless mesons about
the soliton. A more general consideration also includes vector mesons, as in
the soliton model of Sect. 4.7. In such cases we first couple the fluctuations’
orbital angular momentum and their isospin to an intermediate grand spin
K = L + Iφ, where Iφ is the isospin of the meson. In general the total spin
J = L + sφ also includes the meson spin sφ. Thus K is not the grand spin
but an additional, non-conserved quantum number in the body-fix frame. In
total, the intrinsic S-matrix is labeled as S̃GKK′,LL′(φ → ψ) for scattering
of a meson φ to another meson ψ about the soliton. On top we have the
(geometrical) transformation to the laboratory system via [4, 9]
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S(φB → ψB′) = δII′δJJ′
∑

GKK′
ζζ′S̃GKK′,LL′ (φ→ ψ) (8.7)

with the recoupling coefficient written as a 9–j symbol

ζ = [(2G+ 1)(2K + 1)(2s+ 1)(2St + 1)]
1
2

⎧
⎨

⎩

L Iφ K
St s sφ
J I G

⎫
⎬

⎭
. (8.8)

The coefficient ζ′ is obtained from ζ by substituting all non-conserved quan-
tum numbers with primed ones and φ by ψ. The total spin (including orbital
angular momentum) and isospin of the meson–baryon system are J and I,
respectively and St denotes the spin quantum number that is associated with
the sum of the meson and baryon spins (without orbital angular momentum).
In the SU(2) soliton models baryons have identical isospin and spin s; further-
more sφ and Iφ are the spin and isospin quantum numbers of the meson φ.
The derivation of this recoupling scheme is reviewed in Appendix F.

When only pions are involved, i.e., for sφ = 0 and Iφ = 1, the recoupling
coefficient collapses to a 6–j symbol,

ζπ = (−1)L+s+J [(2G+ 1)(2s+ 1)]
1
2

{
I 1 s
L J G

}
. (8.9)

There are more physical S-matrix elements than there are for the intrinsic
S-matrix. So S̃ may be eliminated in favor of linear relations among the
physical S-matrix elements. For the elastic pion–nucleon scattering this leads
to a linear dependence of the I = 3

2 and I = 1
2 scattering amplitudes [4],

2 (2L+ 1)SL32L+1 = 3LSL12L+1 + (L+ 2)SL12L+1

2 (2L+ 1)SL32L−1 = (L− 1)SL12L−1 + 3 (L+ 2)SL12L−1 , (8.10)

with the notation SL2I2J for the physical S-matrix elements. (As usually the
letters S, P , D and F are introduced for L = 0, 1, 2 and 4, respectively.)
These relations are valid in the adiabatic approximation regardless of the
specific soliton model. Hence they are actually large NC results [10, 11], and
confronting these relations with experimental data serves as a check of the
adiabatic approximation. This is shown in Fig. 8.1. We find perfect agreement
in the L = 3 channel2 but observe that these relations do not work well for
the pion angular momentum L = 0, 1 and 2. We may actually identify the
reason for this discrepancy. The adiabatic approximation does not account
for the Δ resonance which, according to (5.45), emerges at order 1/NC while
this approximation is valid only to O

(
N0

C

)
. The P -wave comparison indeed

reveals that this resonance is missing. Within the collective coordinate scheme
resonances arise from quantizing the rotational zero mode of the soliton and
2 The momentum shift of the resonance position corresponds to a mass difference

of order 1/NC.
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Fig. 8.1. Model independent (large NC) relations among the scattering amplitudes
(T -matrix Argand diagrams) from the recoupling scheme, (8.10). The full and dashed
lines refer to the I = 1

2
and I = 3

2
parts of those relations, respectively. The left

panel concerns the channels that intrinsically contain zero modes while the right
panel shows the F -wave channel. Taken from [12]

hence we cannot expect the adiabatic approximation to yield perfect results
in those channels that contain zero-mode fluctuations. These are the grand
spin G = 1 channels that carry forward to the physical S, P and D-wave
channels via the large-NC coupling scheme, (8.7). On the other hand, the
intrinsic G = 1 channel does not show up in the physical F -wave channel.
It is hence no longer surprising that in this channel the large-NC relations
from (8.10) are nicely satisfied and we thus expect soliton models to reliably
predict these scattering amplitudes. This is shown in Fig. 8.2. Obviously the
key features of the empirical data are reproduced: The F15 and F37 partial
waves exhibit pronounced structures (resonances) while the F35 and F17
channels are essentially flat.

We complete this section by discussing an important difference between
the Skyrme and vector meson soliton models. It is indicated in Fig. 8.2 and
exhaustively explained in [14] that the Skyrme model phase shifts rise linearly
with momentum k which is not acceptable. It is actually a consequence of
the contact interactions contained in the Skyrme term, (4.26). Its presence
causes the metric function M to be different from the coefficient of the second
derivative operator in V , cf. (8.2). At large momenta k =

√
ω2 −m2

π the
differential equation for the fluctuations η is then roughly approximated by

[
∂2
r + k2 (1 +m(r))

]
η(r, ω) = 0 , (8.11)

in any grand spin channel. A non-zero result for m(r) arises solely from the
Skyrme term or other higher order derivative terms in the chiral Lagrangian.
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Fig. 8.2. Soliton model prediction for the F -channel πN scattering amplitudes
shown as Argand diagrams for the T -matrix. The full lines represent the empirical
data [13], the short dashed lines give the Skyrme model results and the long dashed
lines those obtained in a vector meson model (a slight variant of the model discussed
in Sect. 4.7. Different versions of vector meson models yield comparable results for
πN scattering [2]). Taken from [12]

The above equation is solved by

η(r, ω) = eikξ(r) with ξ(r) =
∫ r

r0

dr′
√

1 +m(r′) + O
(

1
k

)
(8.12)

and induces the phase shift that rises linearly with momentum,

δ(k) = k

∫ ∞

r0

dr[
√

1 +m(r) − 1] . (8.13)

This small calculation reveals the bad large momentum behavior and actu-
ally raises the question of whether or not the resonant behavior in the Skyrme
model F -wave corresponds to a real resonance. In the context of (4.64) we dis-
cussed that the Skyrme term may be understood as a local (contact) approx-
imation for the more complicated π− ρ effective Lagrangian. And indeed, the
full vector meson Lagrangians with the higher order derivative terms replaced
by propagating vector (or scalar) mesons do not lead to ever-rising phase
shifts. This may also be inferred from Fig. 8.2 and is thoroughly discussed in
[15]. We conclude that the resonant behavior found in the Skyrme model
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indeed describes actual resonances rather than being a technical artifact.
The effect at work here is similar to the incorporation of massive vector mesons
in the electroweak interaction: the substitution of a contact interaction by a
propagating mode.

We refer to the literature for studies of the three flavor scattering problem.
The flavor symmetric case was considered already early [16, 17, 18]. Important
flavor symmetry breaking effects have been studied in [19].

We will now turn to the discussion of the more problematic low partial
waves of elastic pion nucleon scattering with zero-mode contamination. In
these cases we must go beyond the adiabatic approximation.

8.2 S-Wave Scattering

We first consider the case when the relative orbital angular momentum be-
tween the pion and the nucleon vanishes. In the adiabatic approximation only
a single intrinsic S-matrix element, S̃1,00, contributes to the S-wave S-matrix
of elastic πN scattering (for which we may omit the intermediate grand spin
K). This intrinsic channel has unit grand spin and contains the translational
zero mode. With only a single intrinsic S-matrix element available, the adia-
batic approximation predicts identical scattering amplitudes for the two avail-
able isospin channels I = 1

2 and I = 3
2 . This can also be inferred from the top

of the two equations (8.10). As is immediately observed from Fig. 8.1, this
strongly contradicts the experimental situation.

Before discussing non-adiabatic effects, it is illuminating to review the
standard current algebra results for the S-wave scattering amplitude and make
contact with Tomozawa–Weinberg relation [20, 21]. In general the isospin
covariant scattering amplitude is parameterized by two functions b0 and b1
that only depend on the pion momentum k. They enter the R-matrix3 via

−R(k) = b0(k) + 2b1(k)Iπ · IN . (8.14)

Here Iπ and IN are the pion and nucleon isospin operators, respectively. The
matrix elements are related to the phase shifts δI via,

− 〈I|R(k)|I〉 =
tan δI(k)

k
, (8.15)

where I = 1
2 ,

3
2 is the total (conserved) isospin of the πN system. A phase

shift analysis yields [13]

lim
k→0

b0(k) =
a1 + 2a3

3
≈ −0.010

mπ
and lim

k→0
b1(k) =

a3 − a1

3
≈ −0.091

mπ
,

(8.16)

3 We choose to call that standard scattering theory quantity reaction matrix, some-
times the synonym K-matrix is used. The phase convention is dictated by the
Lippmann–Schwinger equation (9.42).
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where a1 ≈ 0.173/mπ and a3 ≈ −0.101/mπ are the scattering lengths asso-
ciated with the total isospin I = 1

2 and I = 3
2 channels, respectively. The

current algebra analysis [20, 21]

a1 = −2a3 =
mπ

4πf2
π

≈ 0.175
mπ

(8.17)

favorably explains the smallness of b0. Since the I = 1
2 and I = 3

2 scattering
amplitudes are identical in the adiabatic approximation, the S-wave scatter-
ing amplitude computed in the previous section yields the leading large-NC

contribution to b0. We denote that piece by b(0)0 . Unfortunately it suffers from
sizable model dependences. In the original Skyrme model the zero momentum
limit is found to be about 0.077/mπ for e = 4.0 while in the six-order sta-
bilization scenario, (4.54), it turns out negligibly small, −0.005/mπ [22]. So
the adiabatic approximation not only incorrectly predicts b1 = 0 as discussed
above but also gives an unsatisfactory result for b0. This calls for the incor-
poration of non-adiabatic effects. They arise from the time dependence of the
collective coordinates in (8.1), that we have omitted so far. Then the angular
velocity Ω, (5.16) enters and couples to a bilinear of the pionic fluctuations.4

Since Ω transforms like an isovector, the pion fluctuations must also combine
to an isovector when constructing the relevant interaction Lagrangian. Since
we also have to accommodate two time derivatives, the required term must
be of the form Ω · (η × η̇) multiplied by a radial function that contains the
classical soliton. Conceptually such a term is not much different from the hy-
perfine splitting, (6.44), that emerged from the time dependence of the isospin
rotations for the kaonic bound state; yet here we deal with scattering states
and with the triplet rather than the doublet representation of SU(2). The
vector product is again associated with the grand spin operator G (similar to
the last factor in (6.44)). It is thus intuitively clear that non-adiabatic effects
induce interaction Hamiltonians with J · G. As already argued, S-wave scat-
tering emerges from the unit grand spin channel. Squaring the relation given
after (6.45) between grand spin, G, total spin, J = JN + L and total isospin
I = IN + Iπ implies J · G = −IN · Iπ. Hence the non-adiabatic effects yield
b1 �= 0. The full Skyrme model calculation has been performed in [23] and in
[24] for a vector meson model. The results may be comprised in form of the
non-adiabatic contribution to the R-matrix

− R(1)(k) = − ω

4πα2
IN · Iπ A(k, k) − ω

2πα2

∫
d3k′

(2π)3
A(k, k′)A(k′, k)

=: b1(k)IN · Iπ + b
(1)
0 (k) . (8.18)

Explicit expressions for the matrix elements A(k, k′) are provided in [23, 24].
They arise from sandwiching functions of the soliton profile between S-wave

4 It also couples linearly to the zero-mode fluctuations, but that is only relevant to
P -wave scattering, cf. next section.
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scattering states computed in the adiabatic approximation. Hence R(1)(k) is
the distorted wave Born approximation (DWBA) for non-adiabatic effects.
The non-adiabaticity of R(1)(k) is also reflected by the appearance of the
moment of inertia, α2, showing that R(1)(k) is of subleading order in the
1/NC expansion. The Skyrme model results [23] for the R-matrix coefficients
at threshold (k → 0) are shown in Table 8.1. We recall from Sect. 5.4 that
e = 4.25 is favored because it properly predicts the Δ-nucleon mass difference.
The second term in (8.18) contains the non-adiabatic correction b

(1)
0 to the

isoscalar part of the R-matrix and is quartic in the fluctuations. It originates
from squaring η × η̇ when Legendre transforming to obtain the interaction
Hamiltonian. Though there are other terms at that order which have not
been included (as in the bound state approach) we see from Table 8.1 that
it favorably contributes to b0 = b

(0)
0 + b

(1)
0 . Also, its inclusion somewhat mit-

igates the model dependence of b0. Obviously, the non-adiabatic corrections
not only significantly improve the isoscalar part of the R-matrix that came
out badly in the adiabatic approximation but also nicely reproduce the isospin
splitting among the two S-wave scattering amplitudes. In [23] the momentum
dependence was studied for momenta up to 300 MeV. The results match the
empirical data well but not perfectly. Such an agreement has finally been
accomplished in a vector meson model [24].

The non-adiabatic corrections to the S-wave scattering problem could be
implemented in tedious but nevertheless straightforward computations. These
corrections stem from coupling the vibrational modes (η) to dynamical col-
lective rotations of the soliton. In general, flavor rotations are also contained
in the fluctuations as zero modes. However, they do not dwell in the S-wave
channel5 because the fluctuations associated with the flavor rotations have
the same orbital angular momentum as the soliton, i.e., L = 1. So there is no
double counting problem in the S-wave channel, yet it unavoidably shows up
in P -wave scattering that we will discuss next.

Table 8.1. The R-matrix coefficients b0 and b1 at zero momentum as function of the
Skyrme model parameter e. These results are adopted from [23] and are measured
in units of inverse pion mass. For the background contribution the separation be-
tween the adiabatic piece (b

(0)
0 ) and its non-adiabatic correction (b

(1)
0 ) is also given,

cf. (8.18)

e b
(0)
0 b

(1)
0 b0 b1

3.75 0.095 −0.080 0.015 −0.113
4.00 0.077 −0.076 0.001 −0.109
4.25 0.061 −0.072 −0.011 −0.106
4.50 0.052 −0.070 −0.018 −0.104
4.75 0.044 −0.068 −0.024 −0.101

5 The translational zero mode has a S-wave component. But we do not treat it
dynamically in the scattering problem.
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8.3 P-Wave Scattering and the Yukawa Problem

The particular role of the Δ resonance in P -wave pion nucleon scattering
has been a long-standing problem for the soliton picture. Figure 8.1 reveals
that the Δ is not accounted for in adiabatic approximation. This is not sur-
prising as the Δ is stable for NC → ∞. Many attempts to incorporate this
resonance as an intermediate state have been put forward. Common to most
of those attempts is the computation of an effective pion–nucleon–Δ vertex
that is subsequently substituted in Feynman diagram calculations like those in
Fig. 8.3. Näıvely, soliton models do not generate a single meson vertex, as the
contribution linear in the fluctuations about the soliton seemingly vanishes
by definition. The absence of the vertex is known as the Yukawa problem in
soliton models. The motivation to nevertheless construct such a vertex from
dynamical collective coordinates are far reaching: from Hamiltonian mechan-
ics [25] to functional integral methods [26]. There are many papers on this
subject, e.g., [27, 28, 29, 30, 31, 32, 33, 34, 35, 36].6 Here we will discuss only
a particular approach [33, 34], the problems thereof and suggest a potential
solution to the Yukawa problem along the approach of [1]. The latter acquires
further support from the studies that will be described in Sect. 9.5: It survives
an 1/NC consistency test for kaon nucleon scattering.

Previously we have argued that the Δ comes about as a rotational excita-
tion of the soliton and is to be treated as a collective resonance. We therefore
have to treat the collective rotations dynamically and explore their coupling
to the small amplitude fluctuations, η. This immediately leads to the double
counting problem that the collective rotations are also contained as zero-mode
fluctuation in the intrinsic G = 1 channel that dominates the physical L = 1
partial wave.

To investigate the role of the zero mode and the potential linear terms we
will somewhat modify the parameterization, (8.1), of the fluctuations (cf. foot-
note 1) [38]

U(x, t) = exp [iτ · ξ(x, t)/2] A(t)exp [iτ · x̂F (r)]A†(t) exp [iτ · ξ(x, t)/2]

= exp [iτ · ξ(x, t)/2] UR(x, t) exp [iτ · ξ(x, t)/2] , (8.19)

with UR and ξi = Dijηj being the collectively rotating hedgehog and the
fluctuations in the laboratory frame, respectively. Linear terms (in ξ) only

N(s)

kπ

+
Δ(s’)

Fig. 8.3. Feynman diagrams for πN scattering with an intermediate Δ resonance.
The dot denotes the form factor defined in (8.23)

6 Those studies are summarized in Chap. IV of [37].
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emerge because UR is not a solution to the full equations of motion. If it were,
linear terms, that eventually mimic the Yukawa coupling to a resonance (and
allow us to identify an effective pion–nucleon–Δ vertex), would definitely be
absent. The expansion of U to linear order in the fluctuations

δU(x, t) = iξ(x, t) ·
{τ

2
, UR(x, t)

}
(8.20)

involves the generator for axial transformations of UR. Therefore the linear
term in the Lagrangian will be of the form

δL = Aμ · ∂μξ(x, t) + . . . (8.21)

where Aμ is the axial current for UR and the ellipses represent terms O
(
m2
π

)

that originate from the explicit breaking of chiral symmetry. The equation
of motion for the chiral angle does not account for time-dependent rotations,
rather it yields ∂iAi = O

(
m2
π

)
. Thus the linear term reduces to

δL = A0 · ξ̇(x, t) . (8.22)

This interaction term is linear in the angular velocities Ωa defined in (5.16)
because A0 contains a time derivative. This linear term has been exhaus-
tively employed in perturbative treatments to incorporate the effects of an
intermediate Δ resonance by taking matrix elements [33, 34]

〈s|δL|k, Iπ; s′〉 =
3fπss′(k2)

2iα2ω
〈s|Iπ · IBk · JB |s′〉 , (8.23)

that defines the hadronic form factor fπss′(k2) for emission (or absorption)
of a pion with momentum k from a baryon. The factor k emerges because of
the P -wave coupling. This form factor essentially involves the Fourier trans-
formation of A0 and parameterizes the vertices in Fig. 8.3. The baryonic
matrix element is computed from the collective coordinate operators con-
tained in A0 with the quantization rules (5.38) and (5.40). The structure
A0
i ∝ DiaεabcΩb x̂c (sin2F + . . .) implies that diagonal matrix elements alike

〈N |A0|N〉 vanish when the operator product is hermitionized. Thus the spins
s and s′ of the baryons in the in and out states differ by one unit, In par-
ticular fπNN = 0 and the intermediate state for πN scattering must be the
Δ resonance. Though this approach fairly well describes the phase shift of
the P33 channel in πN scattering we will now discuss that a serious problem
remains [39]. As noted above, fπss′(k2) is a Fourier transform and as such
reflects the plane wave Born approximation (PWBA) treatment of δL. In the
previous section we have argued that actually the DWBA should be employed.
In that approach the solutions to (8.3) rather than plane waves (via spherical
Bessel functions in the Fourier transform) are to be substituted into δL. To
reveal the resulting problem we choose an alternative derivation of the linear
interaction, (8.22). We require the contribution to the Lagrangian that is lin-
ear in both the time derivative of the fluctuations and the angular velocity. In
the Skyrme model they originate from the time derivative of the chiral field,
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U̇ =
i

2
A(t)Dij(A)

(
ξ̇i +Ωaξ

a
0,i

)
{τj , U0}A†(t) , (8.24)

where the adjoint representation of the collective rotations in defined in (5.22),
see also (5.32). Furthermore

ξa0,i = Dilη
a
0,l = Dilεiklx̂l tanF (8.25)

are the three zero modes (labeled by a) for the rotation of the classical soliton
in the laboratory frame. Equation (8.24) suggests that the linear term may be
obtained from the second order Lagrangian (8.2) by replacing η̇i → ξ̇i+Ωaξ

a
0,i.

Then we have
L(1) = Ωaξ̇iξ

a
0,jMij = Ωaξ̇ · ξa

0M , (8.26)

with the metric function taken from the adiabatic approximation. In the sec-
ond equation we used M ∝ 1, which is valid in the relevant subspace of
transverse magnetic modes. The DWBA corresponds to replacing ξ → D · η
with ηj being the solutions to (8.3),

L(1)
∣
∣
∣
DWBA

= Ωaη̇ · ηa
0M . (8.27)

Now the spatial integral projects out the zero-mode piece from the fluctuation
η due to the orthogonality condition associated with (8.3). However, the zero
mode has η̇ = 0 and thus this linear interaction vanishes in DWBA.

For a sensible investigation we need to consider the contribution in the
Lagrangian which is linear in the fluctuations and has both time derivatives
acting on the collective rotations, i.e., the term O

(
Ω2 × η

)
. For the intrinsic

fluctuations, (8.1), this linear interaction term is of the form

L(1) = HL(r)
[
Ω2 − (Ω · x̂)2

]
x̂ · η −HT(r)Ω · x̂ [Ω − (Ω · x̂) x̂] · η . (8.28)

The radial functions HL(r) and HT(r) are determined from the classical soli-
ton profiles. In Chap. 10 of [1] they are listed for the Skyrme and a vector
meson model.

The interaction (8.28) can, e.g., be treated with the techniques of reaction
theory [40]. It is similar to the Lee model [41, 42, 43] and the result can be
phrased in terms of a width function Γ(k) and an energy shift δE. The width
function reads

Γ(k) = 2π
ω

k

∣∣
∣〈Δ|H(1)|N ;π(k)〉

∣∣
∣
2

, (8.29)

whereH(1) is the Hamiltonian obtained from the interaction Lagrangian7 (8.28)
via a standard Legendre transformation that substitutes the angular velocities
7 The present normalization of the pion field differs by a factor k from that in

Chap. 10 of [1]. The radial functions of the grand spin decomposition, (8.5)
turn into spherical Bessel functions when the background is switched off,
cf. Appendix F.
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by spin operators as in (5.38). The ket state in the above matrix element has
good total spin (J), isospin (I) and pion angular momentum (L). It is obtained
from states representing (pion) fluctuations with good grand spin (G)

|kL, JM ; II3〉 = (−1)L+J+
1
2
∑

GG3I′3

√
4G+ 2

{
I 1 1

2
L J G

}

×CJMGG3,II′3
|kL,GG3〉DI

I′3,−I3(A) , (8.30)

which is a combination of (F.7) and (F.8) for the nucleon with spin s = 1
2 .

The state |k,GG3, L〉 represents a fluctuating meson in the intrinsic frame.
It connects to a pion state with momentum k and isospin projection t in the
laboratory system by8

|kL,GG3〉 =
∑

mt

∫
dΩk CGG3

Lm,1G3−m Y
∗
Lm(k̂)D(1)

G3−m,t(A) |k, t〉 . (8.31)

The Clebsch–Gordan coefficient arises from the coupling according to (8.4)
(with sφ = 0) and the Wigner D-function from the transformation ξ = D · η.
The bra state in the matrix element, (8.29) is represented by the Wigner

D-function with Δ quantum numbers: D
3
2
J3,−I3(A). Note that in general or-

dering ambiguities emerge when computing the collective coordinate part of
the matrix element. Commonly they are fixed by demanding that the non-
resonant piece 〈N |H(1)|N ;π(k)〉 vanishes [44]. In the final matrix element,
|kL,GG3〉 projects out the radial function in the expansion (8.5). Having ob-
tained the width function we may straightforwardly compute the energy shift

δE(k) = P
∫

dq
2π

q

ωq

Γ(q)
ω − ωq

with ωq =
√
q2 −m2

π (8.32)

Here P refers to the Cauchy principal value of the momentum integral, which
is finite. In the end Γ(k) and δE(k) combine to the phase shift

e2iδ = 1 − iΓ
ω − (MΔ −MN) − δE + i

2Γ
, (8.33)

which can be computed numerically once the profile functions and pion scat-
tering wave functions are known. Unfortunately, numerical results are only
available in the plane wave approximation, i.e., when the relevant radial part
of the pion wave function is replaced by the spherical Bessel function j1(kr),
appropriate for the P -wave channel. These results are shown in Fig. 8.4.
Obviously the key features of the phase shift are reproduced. However, the
resulting width seems too small and the predicted phase shift is too large at
8 This and similar transformation relations are most straightforwardly verified from

the requirement that they must also be valid in the absence of the soliton, i.e.,
for plane waves.
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Fig. 8.4. The phase shift, δ for the P33 channel of πN scattering as function of
the pion energy (ω) obtained from (8.33) (long-dashed lines); the short-dashed lines
omit the energy shift δE and the full lines are data [13]. Left panel : Skyrme model,
right panel : vector meson model. Taken from [12]

the high-energy part. Of course, it would be interesting to see whether these
shortcomings get corrected within the DWBA, as it has been the case for the
S-wave channel.

We repeat that the linear term in the form of (8.28) emerges only because
the collectively rotating hedgehog is not a solution to the full equations of mo-
tion. Another puzzle arises because the linear terms in (8.22) and (8.28) are of
different order in the 1/NC counting because a time derivative of the fluctua-
tion is O

(
N0

C

)
while a time derivative of the collective coordinates is O

(
N−1

C

)
.

Again this discrepancy is a consequence of the incomplete treatment of the
field equations. They are solved at the two leading orders in 1/NC (classically
and subsequently for the fluctuations) and therefore inconsistencies arise at
the next order.

Here we have concentrated on the Δ P -wave channel. However, also the
nucleon P -wave channel contains a prominent excitation, the Roper resonance
at about 1440 MeV. At this point we just mention that in adiabatic approx-
imation no significant structure is obtained, in neither the Skyrme nor the
vector meson models [1]. We will further discuss this issue in Sect. 8.5.

In summary, despite the huge amount of work that has already been done,
the description of the P -wave pion nucleon scattering in soliton models still
leaves space for improvement.

8.4 Photoproduction

In the previous sections we have seen that fluctuations about the soliton can be
identified as meson states that scatter off the nucleon. Even more, in adiabatic
approximation the recoupling scheme allows us to construct proper meson
scattering states. These states may be interpreted as asymptotic states for the
meson nucleon system and it is thus suggestive to study other processes that
lead to similar final states; the most prominent one is their photoproduction:
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γN → πN . Other mesons than the pion can be considered but currently we
will not do so. Here we will mainly review the central ideas for such studies
in the soliton model pioneered by Eckart and Schwesinger [45] in the Skyrme
model and upgraded to a vector meson model in [1].

To describe photoproduction processes we will have to find the interaction
Lagrangian that is linear in both the photon and the pion fields. As a matter
of fact, we have already performed parts of that calculation when studying
baryon electromagnetic properties in Sect. 7.1. At that time we computed the
electromagnetic current V e.m.

μ which couples linearly to the photon field Aμ.
However, we only considered the contribution from the collectively rotating
hedgehog to V e.m.

μ . To include meson scattering states, we have to expand (7.1)
(and their analogs in other soliton models) to linear order in the fluctuations
η when substituting the parameterization (8.1). One might wonder whether
additional terms would arise from the response of the soliton on the photon
field. At least in adiabatic approximation this is not the case because the
soliton is a stationary point of the action so that this response would be
quadratic in the photon field. Hence, we obtain the leading contribution to
pion photoproduction by simultaneously expanding the model Lagrangian in
the electric charge e and 1/NC. The latter is metered by inverse powers of the
pion decay constant, fπ.

In radiation gauge,A0 = 0, which is most appropriate because it minimizes
the number time derivatives action on the chiral field, the relevant interaction
Lagrangian is of the form

Lπγ =
e

fπ
D3iRijm(x)ηj(x, t)Am(x, t) , (8.34)

where the expansion parameters are made explicit. The static functions,
Rijm(x), are determined from the background soliton. Because of parity in-
variance only three structures emerge

Rijm(x) = R1(r)εijm +R2(r)εilmx̂lx̂j +R3(r)εijnx̂nx̂m . (8.35)

Explicit expressions for the radial functions Ri in terms of soliton profiles may
be traced from [1, 45]. The rotation matrix D3i appears in (8.34) because the
pion fluctuations ηj as well as the soliton profiles dwell in the intrinsic frame
while the photon field resides in the laboratory system. The isospin index
“3” follows from the reduction of the charge operator, (7.3), to flavor SU(2).
Together with the ε-tensor in (8.35) it insures that in the laboratory system
only charged pions (ξ± = (ξ1 ± iξ2) /

√
2) couple.

Equation (8.31) relates the pion states whose creation and annihilation
operators are contained in η to the physical pion states with good momentum
k and isospin projection t. So we know how to evaluate the pion matrix
element of the interaction, (8.34). For the photon field we adopt the standard
multi-pole decomposition that defines electric and magnetic modes,
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A(x, t) =
λ=el.,mag.∑

�μ

∫ ∞

0

q dq
[
(i)�αλ�μ(q)Ã

λ

�μ(q,x) + h.c.
]
. (8.36)

The multi-pole fields are expressed in terms of vector spherical harmonics and
Bessel functions [46],

Ã
el.

�μ(q,x) =
√
q

π

(
1
iq

∂

)
× [j�(qr)Y ��μ(x̂)] ,

Ã
mag.

�μ (q,x) =
√
q

π
j�(qr)Y ��μ(x̂) . (8.37)

In this decomposition
[
αλ�μ(q)

]†
creates a photon with orbital angular mo-

mentum quantum numbers (�, μ) and momentum q = qêz. The electric and
magnetic modes have parity (−1)�+1 and (−1)�, respectively. We are now fully
equipped to compute the transition amplitude

Sfi = 〈kt; s′; J ′
3, I

′
3|
∫

d4xLπγ |qμ; s; J3, I3〉 (8.38)

from the interaction Lagrangian, (8.34). The labels s and s′ refer to the iden-
tical spin and isospin quantum numbers of the baryon in the initial and final
states, respectively. The corresponding projection quantum numbers are also
made explicit. For the nucleon with s = s′ = 1

2 it is convenient to introduce
reduced electric and magnetic multi-pole moments, M (e) and M (m) via [45]

Sfi = iδ(q − ω)
√
α

q
√

2πω

∑

JL�

√
(2L+ 1)(2�+ 1)(i)�−L+1D

(J)
J3+μ,J′

3
(φ, θ,−φ)

×CJJ
′
3

L0, 12J
′
3
CJJ3+μ

�μ, 12J3

(
iM (e)

�LJ + μM
(m)
�LJ

)
, (8.39)

where α = e2

4π = 1/137 is the electromagnetic fine structure constant while
φ and θ are the azimuthal and polar angles of the pion momentum k. This
part of the transition amplitude arises from writing the spherical harmonic
function in (8.31) as a matrix element of the rotation operator, 〈L0|D̂(k̂)|Lm〉
and projecting D̂ onto grand spin states, (8.30) on the left and nucleon photon
states (coupled to good total spin) on the right. This also explains the specific
indices of the resulting Clebsch–Gordan coefficients. In (8.39) the δ function
that identifies photon and pion energies arises because in the adiabatic ap-
proximation the nucleon is infinitely heavy and does not take away any energy.

As suggested by (8.34) the reduced multi-pole moments in (8.39) are com-
puted as radial integrals that essentially involve three factors: (i) a function
of the classical soliton, (ii) a Bessel function for the incident photon and (iii)
the radial part of the pion scattering wave function computed in adiabatic
approximation. The resulting bulky expressions are listed in [45] and [1] for
the Skyrme and a vector meson model, respectively. The M (m)

�LJ transfer the
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orbital angular momentum directly from the photon to the pion, L = � while
the electric ones, M (e)

�LJ , change it by one unit, L = � ± 1. The momentum
arguments of the wave functions under items (ii) and (iii) are related by the
δ function in (8.39), so that these moments not only depend on the displayed
quantum numbers but are additionally functions of a single momentum that is
not made explicit. Finally these moments are related to the helicity elements
in Walker’s [47] definition via [45]

M
(e)
�LJ =

√
q

8πα

[

δ�L+1δJL+ 1
2

√
L+ 2
L+ 1

(
AL+ +

L

2
BL−

)

−δ�L−1δJL− 1
2

√
L− 2
L

(
AL− − L+ 1

2
BL−

)]

M
(m)
�LJ = −

√
q

8παL(L+ 1)
δ�L (1 − δ�0)

[
δJL+ 1

2
L

(
AL+ − L+ 2

2
BL+

)

+δJL− 1
2
(L+ 1)

(
AL− +

L− 1
2

BL−

)]
, (8.40)

in terms of which the data are commonly discussed. The A and B type ampli-
tudes correspond to helicities 1

2 and 3
2 , respectively. The subscript indicates

the pion orbital angular momentum and its relation to the total angular mo-
mentum, L± : J = L ± 1

2 . Isospin labels are not shown. A huge amount of
numerical results exists for the helicity amplitudes computed in various soli-
ton models [1, 45]. A sample from a vector meson soliton model is presented
in Figs. 8.5 and 8.6. Figure 8.5 shows helicity amplitudes that correspond to
S- and P -channels of pion nucleon scattering. It is not astonishing that the
model calculations for A0+ do not reproduce the prominent structure of the
empirical data. They are directly linked to the S11(1540) resonance that is
not contained in the adiabatic approximation presently adopted for the pion
field. In Sect. 8.2 we have described how to address that problem. Most likely,
the application of that approach to photoproduction will be successful as well.
More surprisingly, the data in the P -wave channel (i.e., A1−) are reasonably
well reproduced. That is, effects of the Roper resonance (P11(1440)) are cap-
tured in the model calculation of pion photoproduction. Recall that the model
failed to describe that effect in πN scattering, at least in adiabatic approxi-
mation. In that case the contribution of intrinsic L = 1 zero mode strongly
dominates over the L = 0 piece that reflects the scaling (or breathing) excita-
tion of the soliton. While the latter indeed is resonant [5, 49, 50] the phase shift
in the zero-mode channel is essentially flat, leaching out the breathing mode
structure. In photoproduction an additional suppression factor emerges for
the intrinsic L = 1 contribution so that the breathing excitation dominates.

In Fig. 8.6 helicity amplitudes in those higher partial waves are shown
that correspond to D- and F -wave channels of πN scattering. Though these
computations do not reproduce all details of the data, they describe the gross
features reasonably well. This again supports the conclusion that the adiabatic
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represent the data. This graph is adopted from [12]
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Table 8.2. Nucleon–photon couplings in units of 10−3GeV− 1
2 for various resonances

of the πN system. The respective upper entries are the empirical data [51] while
the lower ones result from a vector meson soliton calculation [1]. Some resonances
couple only very weakly to photons, e.g., D13(1700), and are omitted here

L2I2J mass (MeV) A
(p)
3
2

A
(p)
1
2

A
(n)
3
2

A
(n)
1
2

P11 1440 −65 ± 4 40 ± 10
1340 −134 134

D13 1520 166 ± 05 −24 ± 09 −139 ± 11 −59 ± 13
1590 171 −117 −126 −36

S11 1535 90 ± 30 −46 ± 27
1590 57 64

S11 1650 53 ± 16 −15 ± 21
1340 51 32

D15 1675 15 ± 9 19 ± 8 −58 ± 13 −43 ± 12
1600 0 −22 −110 −55

F15 1680 133 ± 12 −15 ± 6 −33 ± 9 29 ± 10
1690 110 0 0 171

P13 1720 −19 ± 15 18 ± 20 −29 ± 61 1 ± 15
1540 27 −9 −27 9

approximation works well for the higher partial waves that are not afflicted
with contaminations from zero-mode channels.

Let us now compare to the empirical resonance couplings. The PDG [51]
usually quotes them in the form

ImAβL± = ∓fAβ1
2

and ImBβL± = ±f
√

16(2J − 1)(2J + 3)Aβ3
2
, (8.41)

where the superscripts label isospin (proton, neutron or Δ). In principle the
kinematical factor f must be formulated in terms of the position and width
of the hadronic resonance implying a Breit–Wigner fit to the πN scattering
data, reflecting background subtraction. This is not really appropriate here
because photoproduction and resonance formation is computed in a single
step. For that reason an average value for f has been used in [1] to perform
a meaningful comparison with data. The model results for Aβh are extracted
in a two-step procedure from the momentum-dependent helicity amplitudes:
First, in a prescribed LIJ channel the position of the maximum of the imagi-
nary part of the amplitude is determined. This value is identified as the mass
of the resonance. Second, the value at this mass is substituted into (8.41) to
evaluate the resonance coupling. We recognize from Table 8.2 that many of
the resonance couplings are reasonably reproduced by the model calculation,
at least for the phases. Certainly the S-wave channel (A(n)) is an excep-
tion, and we blame it again on the adiabatic approximation. Remarkably,
the model calculation predicts the Roper resonance (P11(1440)) to strongly
couple to the photon, though its resonance energy comes out a bit on the
low side.
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Table 8.3. The Δ-photon resonance couplings. In the P33(1232) case the model
prediction arises from (8.42) and (8.43). All other results are obtained as in table 8.2

L2I2J mass (MeV) A
(Δ)
3
2

A
(Δ)
1
2

P33 1232 −250 ± 8 −135 ± 6
1240 −255 −140

S31 1620 27 ± 11
1600 13

D33 1700 85 ± 15 85 ± 22
1600 36 99

F35 1905 −45 ± 11 26 ± 11
1690 0 44

F37 1950 −97 ± 10 −76 ± 12
1690 −102 −76

So far we have not discussed model predictions for the A1+ and B1+ am-
plitudes. As can, e.g., be observed from Fig. 2 in [45], soliton models predict
essentially flat amplitudes. Yet, the empirical data exhibit pronounced struc-
tures that correspond to the photo-excitation of the Δ-resonance. Hence, we
certainly do not expect these amplitudes to be reproduced in adiabatic ap-
proximation. We must resort to the collective coordinate approach to consider
the photo-induced Δ nucleon transition. Essentially the methods of Sects. 5.3
and 5.4 are to be applied and the results can be phrased in terms of the
above-discussed resonance couplings. The linear combinations

M1 =
−1
2
√

3

(
3AΔ

3
2

+
√

3AΔ
2
2

)
and E2 =

1
2
√

3

(
AΔ

3
2
−
√

3AΔ
2
2

)
(8.42)

describe the coupling of the Δ nucleon system to magnetic and electric photons
with orbital angular momentum � = 1 and � = 2, respectively. These couplings
are related to the magnetic dipole and electric quadrupole transition matrix
elements [52, 53, 54]

M1 = 1
3 〈Δ|

∫
d3rj2(qr)

(
3z2

r2
− 1

)
V e.m.

0 (x)|N〉 ,

E2 = 1
2 〈Δ|

∫
d3rj1(qr)j1(qr)ε3ij x̂iV e.m.

j (x)|N〉 , (8.43)

where V e.m.
μ (x) refers to the electromagnetic current in the soliton model,

e.g., (5.48). This current also contains collective coordinate operators in the
space of which the matrix elements are computed. The couplings between
the photon and I = 3

2 resonances are shown in Table 8.3. The agreement with
data is about as good (or meager) as for the I = 1

2 channels. In total, it is
comfortable to see how far one can go with soliton models for baryons. Be-
ing able to compute energy-dependent helicity amplitudes (and phase shifts)
starting from a simple Lagrangian distinguishes soliton models positively from
many other baryon models.
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8.5 Non-harmonic Excitations

In Sects. 8.2 and 8.3 we have already seen that in some cases it is necessary
to respect the coupling of the collective flavor rotations to other excitations
of the soliton. Unfortunately we have also seen that this becomes quite cum-
bersome in the context of small amplitude fluctuations about the soliton.
In this section we discuss an alternative treatment that introduces collective
coordinates for presumably important modes. Of course, the introduction of
additional collective coordinates is a matter of educated guesses. We will espe-
cially consider the use of collective coordinates for the scaling (or breathing or
monopole) excitation of the soliton. As mentioned above, the small amplitude
approach indeed shows that the monopole channel is resonant [5, 49, 50]. In
the adiabatic approximation to πN scattering this resonance is washed out
by the (geometrical) coupling to the zero-mode channel of the flavor rotation.
In order to treat that coupling dynamically and to allow for large amplitudes
in the resonant channel, the idea is then to introduce collective coordinates
for both the breathing and the rotational modes and investigate their interac-
tion. As a particular result we will find that this procedure describes the Roper
resonance as expected from the photoproduction results, i.e., the resonance
energy is slightly under-estimated.

We will initially motivate the introduction of the collective breathing mode
in the much simpler case of the kink soliton model,9 cf. Sect. 4.3. We introduce
the corresponding collective coordinate μ = μ(t) via the parameterization for
the field

Φ(x, t) = Φ+

(
x

μ(t)

)
=

m√
λ

tanh
(

mx√
2μ(t)

)
. (8.44)

Upon substitution into the Lagrangian, (4.15), and spatial integration we find
the Lagrange function

L(μ, μ̇) =
E+

2ω2
+

μ̇2

μ
− E+

ω+

(
μ+

1
μ

)
(8.45)

for the collective coordinate μ. The mass, E+ is given in (4.17) while ω+ =
m
√

6/(π2 − 6). The quantization prescription, (5.9), yields the Schrödinger
equation

{
−
ω2

+

2E+

√
μ
∂

∂μ

√
μ
∂

∂μ
+
E+

ω+

(
μ+

1
μ

)}
Ψ(μ) = EΨ(μ) . (8.46)

Introducing the variable ρ2 = μ and the wave function φ(ρ) = Ψ(ρ2)/
√
ρ

directly maps this Schrödinger equation onto that of an axially symmetric

harmonic oscillator with (non-integer) angular momentum � = 2
ω+

√
E2

+ +
ω2

+
16 .

The energy eigenvalues are readily obtained as

9 The author is grateful to H. Walliser for pointing out this analog.
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En =
ω+

2
(2n+ 1 + �) =

√

E2
+ +

ω2
+

16
+ ω+

(
n+

1
2

)
. (8.47)

In particular we find the energy of the first excitation to be ΔE = E1 −E0 =
ω+ ≈ 1.245m. Similar to (8.3) small amplitude fluctuations can be considered
for the kink, cf. (4.19). Besides the scattering states a zero-mode bound state

(for the translation) and a discrete bound state at ω1 =
√

3
2m ≈ 1.225m

emerge [55]. The approximate agreement, ΔE ≈ ω1, shows that the breathing
mode approach to the kink predicts the lowest excitation energy with an
accuracy of better than 2%. This also establishes that collective coordinate
quantization is very useful for modes which parameterize transformations that
are not exact invariances but have low excitation energies.10

So we have very good reason to apply the breathing mode technique to
the chiral soliton and particularly study the interaction between this and the
rotational modes. Similar to the kink example, the collective breathing mode
is introduced via the ansatz for the chiral field

U(x, t) = A(t)exp
[
ix̂ · τF

(
r

μ(t)

)]
A†(t) , (8.48)

where again A(t) contains the collective coordinates for the rotations and
F (r) is the classical soliton profile. Substituting this parameterization into
the two-flavor Skyrme model Lagrangian yields a Lagrange function for the
collective coordinates,

L(x, ẋ, A, Ȧ) =
4
9

(
a1 + a2x

− 4
3

)
ẋ2 −

(
b1x

2
3 + b2x

− 2
3 + b3x

2
)

+
1
2

(
α1x

2 + α2x
2
3

)
Ω2 , (8.49)

with the redefinition x(t) = μ
3
2 (t). The time derivative of the rotational de-

grees of freedom is contained in the angular velocities, (5.16). The coefficients
a1, a2, . . . , α2 are functionals of the chiral angle and can easily be computed
numerically. Explicit expressions and numerical values are, e.g., listed in [56].
The bi and αi add up to the classical mass Ecl and moment of inertia α2,
respectively. Since F (r) is a stationary point of the action, the potential part
of L is minimized for x = 1. This implies b1 − b2 + 3b3 = 0 and serves as a
good test for the accuracy of the numerical soliton to the classical equation
of motion. The Schrödinger equation is straightforwardly obtained from the
prescription (5.9)

10 The absolute energy scale is not reliably reproduced; after all E0 is not zero.
This deficiency is related to fact that the quantum corrections associated with
the breathing mode are not included. Therefore it is most appropriate to only
consider mass differences.
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Table 8.4. Mass splittings (measured in MeV) with respect to the nucleon for
radially and rotationally excited baryons in the Skyrme model (SM) with e = 6.0
and a scalar extended Skyrme model (sSM) compared to the empirical data (expt.)
in the P11 and P33 channel. For the Roper resonance [N(1440)] both the Breit–
Wigner (BW) mass and the pole position (PP) estimates are listed [51]

n, 2j SM sSM expt.

1, 1 342 380 501 BW
426 PP

2, 1 664 756 771
0, 3 268 276 293
1, 3 598 660 661
2, 3 914 1040 981

{

− 1
2
√
mα3

∂

∂x

√
α3

m

∂

∂x
+ b+

1
2α

J2

}

Ψ(x,A) = EΨ(x,A) , (8.50)

with the abbreviationsm = m(x) = 8
9 (a1+a2x

− 4
3 ), b = b(x) = b1x

2
3 +b2x−

2
3 +

b3x
2 and α = α(x) = α1x

2 +α2x
2
3 . The spin operator emerges via (5.20) since

the momenta conjugate to A commute with the breathing variable. The eigen-
functions are easily obtained from the separation Ψ(x,A) = fj(x)D

(j)
mm′(A),

where the Wigner D-functions represent the rotational part of the baryon
wave function, cf. Sect. 5.2. This approach is still constrained to baryons with
identical spin and isospin because the hedgehog structure is not altered. We
end up with an ordinary differential equation for the breathing mode wave
functions fj(x) whose j dependences arise from J2 → j(j+1). Hence the dis-
crete eigenenergies are Enj , where n labels the analog of the radial quantum
number of an ordinary spherically symmetric quantum mechanical system. In
this notation the nucleon is (n, 2j) = (0, 1) while the Δ is (0, 3). The Roper
is interpreted as first radial excitation of the nucleon and hence corresponds
to (1, 1). In Table 8.4 the predicted mass differences (with respect to the
nucleon) are compared to the empirical data. We observe that a significant
alteration for the Skyrme parameter is needed to accommodate the Δ nucleon
mass difference. This strongly indicates that the breathing mode, though not
an exact zero mode, is indeed soft as small modifications cause sizable vari-
ations. As announced, the eigenenergy associated with the Roper resonance
comes out somewhat on the low side. Nevertheless, this state is definitely
contained in the soliton model, just well hidden in πN scattering and the dy-
namic interplay with the rotational modes seems important. The other radial
excitations of the nucleon and Δ are reasonably reproduced in this approach
as well. Similar (maybe even better) results are obtained when quantizing
the breathing mode in a model that also contains a scalar field.11 This scalar

11 It is highly desirable to employ a vector meson model. Ingenuously scaling the
time components leads to a non-integer baryon charges. The reason is that the
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Table 8.5. The mass differences with respect to the nucleon in the three-flavor
breathing mode approach in a scalar extended Skyrme model. All numbers are in
MeV. Experimental data are taken from [51], if available. Unless otherwise noted,
they denote four- and three-star resonances. The experimental states furnished
with “?” in the Ξ row are potential isospin 1

2
candidates whose spin–parity quantum

numbers are not yet determined

sSM expt. sSM expt. sSM expt.

N Input 445
501 BW
426 PP 869 771

Λ 173 177 688 661 1129 871

Σ 284 254 722 721 1096 831 (∗)
941 (∗∗)

Ξ 380 379 971
751
1011

(?) 1324 —

Δ 276 293 680 661 1010 981
Σ∗ 460 446 878 901 1148 1141
Ξ∗ 617 591 1068 — 1269 —
Ω 745 733 1386 — 1719 —

model (Its Lagrangian is actually displayed in (10.35).) is discussed in detail
in [57]. Essentially only the numerical values of the parameters a1, . . . , α2 alter
when adopting this scalar Skyrme model (sSM).

A conceptually very interesting question arises. Above we have seen that
soliton models predicted a radial excitation about 400 MeV above the nucleon.
Simultaneously, in flavor SU(3) a state with nucleon quantum numbers dwells
in the 10 representation, cf. Fig. 6.3. Apart from symmetry breaking effects
its mass difference to the nucleon is given in terms of the moment of inertia
for rotations into strangeness direction 3

2β2 ≈ 400 MeV, i.e., it is in the same
ballpark. The immediate puzzle is whether or not soliton models predict two
nearby states. To decide on that question, the breathing mode approach must
be generalized to three flavors and take A ∈ SU(3) in (8.48). In sect. 9.2 we
will thoroughly discuss technical issues of this generalization. Here we restrict
ourselves to the presentation of the numerical results in Table 8.5. The model
gives a fair account of the low-lying baryons with spin 1

2 and 3
2 as well as the

corresponding excited states. Especially, only a single state is predicted with
excitation energy around 400 MeV in the nucleon channel. Its wave function
is a complicated mixture of radial and rotational excitations. The same is the
case for the following nucleon type state which might be associated with the
observed N(1720). So the suspected inconsistency is avoided. Being of such
a complicated nature questions approaches that identify the N(1720) as a
pure SU(3) anti-decuplet (crypto-exotic) state [58]. The results in Table 8.5

corresponding field equations are actually constraints that must always be sat-
isfied. Stated otherwise, the breathing mode approach to vector meson models
requires to solve the stationary condition for any value of the scaling variable.
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suggest that the model overestimates the resonance energy of N(1720) by
about 100 MeV. Yet, more recent data analysis indicate the resonance mass
to be about 1.8 GeV [59]. Finally the model suggests not to assert P11 quan-
tum numbers to the Ξ(1690) resonance, rather Ξ(1950) should carry these
labels [60]. This is also concluded from a recent study within the bound state
approach to the SU(3) Skyrme model [61]. So far the exact quantum numbers
of these two resonances are not determined experimentally [51].

Let us round up this section by mentioning that Hajduk and Schwesinger
considered additional non-harmonic excitations [62]. On top of the breathing
mode they allowed for deformations of the soliton to describe quadrupole
resonances in the two-flavor model. Furthermore the breathing mode approach
was employed to analyze color transparency in the Skyrme model [63].

8.6 Estimate of Quantum Corrections in Soliton Models

In the final section of this chapter we will consider the vacuum polarization
energy that emerges by summing the zero-point energies of the meson fluc-
tuations in the soliton background. Often this energy is also referred to as
the Casimir energy. We have already argued after (8.3) that all properties
computed from meson fluctuations are O

(
N0
C

)
. So this vacuum polarization

energy is the next to leading order contribution to the soliton energy. This is
very interesting because it teaches us important aspects about the absolute
energy scale in soliton models. After all, up to now we have merely considered
mass differences when investigating baryon spectra. Various attempts have
been made to estimate their quantum corrections [3, 64, 65, 66]. Here we will
in particular discuss the progress made in [66]. Before we go into details we
note that chiral theories D = 3+1 are not renormalizable as far as the meson
fluctuations are concerned. Thus, a rigorous calculation, with renormalization
conditions for only a finite set of Green’s functions, is not possible.

To motivate the use of the techniques from the beginning of this chapter,
we first give an heuristic argument for the important role of phase shifts
when computing vacuum polarization energies. We imagine placing the system
in a box by imposing the boundary condition ψk(x) = 0 at x = L for L
much larger than the typical soliton extension.12 The boundary condition
sin(kL+ δ(k)) = 0 yields a discrete spectrum of allowed values of k, which we
enumerate as

knL+ δ(kn) = nπ . (8.51)

We subtract the n and n+ 1 entries from each other. Since L is large, kn+1 −
kn must be small and we approximate the difference of phase shifts by its
derivative,

12 In [67] the relation between phase shifts and vacuum polarization energy is
derived without reference to artificial boundaries.
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1
π

(
L+

dδ(k)
dk

)
=

1
kn+1 − kn

= ρ(k). (8.52)

The right hand side is the inverse of the spacing between adjacent levels, i.e.,
the density of states ρ(k). The continuum limit is obtained by sending L→ ∞.
To find the change in the density of meson states induced by the soliton we
compare ρ(k) in the presence of the potential (e.g.,Mij(x) and Vij(x) in (8.2))
to the free density of states ρ(0)(k) = L

π from M
(0)
ij and V (0)

ij ,

Δρ(k) = ρ(k) − ρ(0)(k) =
1
π

dδ(k)
dk

. (8.53)

We find the vacuum polarization energy by summing the change of zero- point
energies weighted with the so-computed variation of the density,

ΔE =
1
2

⎧
⎨

⎩

∑

j

ωj +
∫ ∞

0

dk Δρ(k)

⎫
⎬

⎭
=

1
2

∑

j

ωj +
∫ ∞

0

dk
2π

dδ(k)
dk

√
k2 +m2 ,

(8.54)
where ωj labels the (absolute value of the) discrete bound states and m is the
mass of the fluctuating meson field.

This expression for the vacuum polarization energy can almost straightfor-
wardly be adopted in chiral soliton models, at least in the adiabatic approxi-
mation. The only complication arises from the emergence of various channels
in the scattering problem. If we dealt only with channels that would not mix
under scattering, we could directly employ (8.54) by merely summing over
those channels. Otherwise we have to diagonalize the S-matrix and extract
the phases of these eigenvalues.13 As already noted, the total grand spin,
(8.4) is conserved and thus the S-matrix is block diagonal. We then need to
diagonalize each such block. Due to the invariance of the trace under diago-
nalization, the sum over the so-computed phases with grand spin G is

δtotG (k) =
1
2i

tr lnS̃G . (8.55)

As discussed in Appendix F we find δtotG directly from the equation of motion
for the fluctuations about the soliton, (8.3). To this end the (unrenormalized)
vacuum polarization energy of the soliton formally reads

ΔE[U ] = 1
2

∑

jG

(2G+ 1)ωjG +
∑

G

(2G+ 1)
∫ ∞

0

dk
2π

dδtotG (k)
dk

√
k2 +m2 ,

(8.56)
where ωjG is the jth bound state in the channel of grand spin G.

As explained at the end of Sect. 8.1 the Skyrme model phase shifts rise lin-
early with momentum for any given grand spin G. Summing with degeneracy
2G+ 1 effectively adds two further dimensions so that
13 Unitarity of the S-matrix implies that these eigenvalues have unit absolute value.
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δtot(k) −→
∑

G

(2G+ 1) δtotG (k) → a0k
3 + a1k +

a2

k
(8.57)

as k → ∞. The constants ai can at least be extracted numerically from the
asymptotic behavior of δtot(k). In some cases they are known as function-
als of the chiral field [65, 68]. Substituting the expansion (8.57) into (8.56)
immediately reveals the quartic ultraviolet divergence of the vacuum polar-
ization energy in the Skyrme model. Actually, all terms displayed in (8.57)
yield divergent contributions to the vacuum polarization energy.

Ultraviolet divergences are compensated by counterterms in the renor-
malization program. The non-renormalizability of chiral Lagrangians induces
infinitely many counterterms. They are classified according to the chiral ex-
pansion, a simultaneous expansion in the number of derivatives acting on the
chiral field and the violation of exact chiral symmetry, as measured by the
pion mass. In this scheme (called chiral perturbation theory), the non-linear
σ term, (2.40), and the pion mass term, (4.25), are of second order, while the
Skyrme term, (4.26), is of fourth order. In this way we label any piece in the
chiral Lagrangian by L(N)

i , where i = 1, . . . , iN counts the independent terms
of a prescribed chiral order N . The general chiral Lagrangian is the sum

L =
∑

i,N

[
c
(0)
i,N + c

(1)
i,N (D,μ)

]
L(N)
i . (8.58)

The superscript r = 0, 1 on the coefficients c(r)i,N (so-called low-energy con-
stants) labels the order in �. If we were interested in two-loop or even higher
quantum corrections we would additionally require r = 2, . . . pieces. The
computation of a specific observable proceeds as follows: First, there are the
classical (or tree level) contributions that solely involve c(0)i,N . Second there
are O (�) (or one loop) quantum corrections computed from the interactions
described by c(0)i,NL(N)

i . These involve ultraviolet divergent loop integrals that
are regularized in a specific scenario so that a finite value is attached to these
integrals as long as the regularization parameter is not taken at its singu-
lar limit. In dimensional regularization this is the deviation, ε > 0, from the
physical space time dimension D = 4 − 2ε. In the third step counterterms,
c
(1)
i,N (D,μ)L(N)

i , are added to the Lagrangian. Their contribution to the chosen
observable is computed at tree level only because the induced quantum cor-
rections would be O

(
�

2
)
. The coefficients c(1)i,N (D,μ) diverge in the singular

limit such that they cancel the r = 0 one-loop singularities. Since the finite
part of an infinite quantity is ambiguous, a scale μ emerges that parameterizes
this ambiguity. This must be fixed by some renormalization prescription that
commonly demands specific values for Green’s functions at prescribed exter-
nal momenta. In chiral perturbation theory this is transferred to matching
empirical scattering data. For actual computations only a finite number of
pieces L(N)

i can be considered and one starts from a specific set of low-energy

constants
{
c
(0)
i,N

∣
∣N ≤ Nmax

}
. If the considered model were renormalizable,
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quantum corrections would only require counterterms of the same kind that
are parameterized by the set

{
c
(1)
i,N

∣∣N ≤ Nmax

}
. Since chiral Lagrangians are

not renormalizable the interactions of chiral order N induce counterterms of
higher order. Hence sensible calculations of quantum corrections are impos-
sible unless some criterion is established to control and eventually omit such
higher order pieces in the Lagrangian. In chiral perturbation theory the higher
order terms come together with higher powers of the external momenta (q)
of the considered process. Hence small q (e.g., in the threshold region) al-
lows one to ignore higher chiral orders. The typical expansion parameter is
q/4πfπ. Unfortunately for soliton configurations that decay from π to zero
within a fm is of the order one and the chiral truncation scheme cannot be
blindly adopted. We will nevertheless do so and use the argument of [66]
to justify the truncation a posteriori. As already explained, the computation
of a specific observable, say Γ, results in a sum of the classical, quantum
and counterterm contributions, Γ(0), Γ(1) and Γ(1)

ct. , respectively. The singular
pieces of the latter two cancel and the regulator may be taken at the physical
value. They also have finite pieces that are characterized by a scale. The scale
dependence cancels by the renormalization conditions. We can compute Γ(1)

(in some regularization scheme) but we do not know Γ(1)
ct. to all chiral orders.

However, we can read off its singular pieces from Γ(1). We will find a finite
answer by taking Γ(1)

ct. identical to these singular parts. This finite result will
be scale dependent because we were unable to eliminate the scale dependence
of Γ(1). If we are lucky, the final (numerical) value depends only mildly on the
scale and we may argue that the omission of the (unknown) counterterms is
an acceptable approximation. Exactly this is the strategy and result of [66].

After these general remarks on renormalization in chiral theories we com-
pute the vacuum polarization energy in the two-flavor Skyrme model. We
subtract the asymptotic behavior (8.57) from the formal expression (8.56)

ΔE[U ] = 1
2

∑

jG

(2G+ 1)ωjG

+
∫ ∞

0

dk
2π

√
k2 +m2

{
d
dk
[
δtot(k) − a0k

3 − a1k
]
+

a2

k2 +m2

}

+Esub , (8.59)

where the subtractions, Esub refer to the pieces that have been subtracted
under the integral and must be added back in. Furthermore the a2 term has
been slightly altered to avoid infrared divergences; that finite modification
will be included in Esub. We integrate by parts (this implies the use of an
intermediate regulator) and find14

ΔE[U ] = 1
2

∑

jG

(2G+ 1)(ωjG −m) +
a2

2π

14 Chapter 5.4 of [55] contains an heuristic argument that yields the analog expres-
sion without integration by parts.
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−
∫ ∞

0

dk
2π

{
k√

k2 +m2

[
δtot(k) − a0k

3 − a1k
]
− a2√

k2 +m2

}

+Esub . (8.60)

The second piece in the surface contribution, ∝ a2 − mδtot(0), is identified
from the asymptotic behavior, (8.57). It has entered the sum over bound
states via Levinson’s theorem according to which δtot(0)/π counts the number
of bound states. (In view of the asymptotic behavior, (8.13), this merely is
a convention.) Next, we treat the subtractions in dimensional regularization
that generalizes integrals like those above according to [69]

∫ ∞

0

dDk

(
k2
)α

(k2 +m2)β
=
(√

π

2

)D (
m2
)D

2 +α−β Γ
(
α+ D

2

)
Γ
(
β − α− D

2

)

Γ
(
D
2

)
Γ (β)

.

(8.61)
We identify the subtractions from (8.60) and write

2πEsub = −
∫ ∞

0

dk√
k2 +m2

[
a0k

4 + a1k
2 + a2

]

−→ −μ4−D
∫ ∞

0

dD−3k
a0k

4 + a1k
2 + a2√

k2 +m2

=
λ(D)

2

[
3m4a0

4
−m2a1 + 2a2

]
+
m4a0

16

[
3 ln

(
m2

μ2

)
+

1
2

]

−m
2a1

4
ln
(
m2

μ2

)
+
a2

2

[
ln
(
m2

μ2

)
− 1

]
+ O (D − 4) , (8.62)

where the scale μ has been introduced to preserve the dimensionality of the
integral. The divergences are parameterized by

λ(D) =
1

D − 4
+

1
2

[γ − 1 − ln (4π)] with γ = 0.5772157 . . . . (8.63)

This is singular at the physical dimension D = 4. Any finite change Δλ is
compensated by a multiplicative renormalization μ → e−Δλμ. The divergent
λ piece is absorbed in the (partially unknown) higher order counterterms.
Collecting pieces we find the scale-dependent vacuum polarization energy

ΔE(μ) = −3m−
∫ ∞

0

dk
2π

kδtot(k) − a0k
4 − a1k

2 − a2√
k2 +m2

(8.64)

+
m4a0

32π

[
3 ln

(
m2

μ2

)
+

1
2

]
− m2a1

8π
ln
(
m2

μ2

)
+
a2

4π

[
ln
(
m2

μ2

)
+ 1

]
.

Here we made use of the fact that the only bound states are the translational
and rotational zero modes in the G = 1 channel. Equation (8.64) is the result
derived in [66]. Unfortunately there are some ambiguities. We have already
mentioned the intermediate use of a regulator when integrating a divergent
integral by parts. Also recall that we subtracted
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∫ ∞

0

dk
2π

√
k2 +m2

[
3a0k

2 + a1 +
a2

k2 +m2

]

in (8.59), but only added back the dimensionally regularized form of
∫ ∞

0

dk
2π

a0k
4 + a1k

2 + a2√
k2 +m2

in (8.62). In general the difference between these two expressions diverges.
Fortunately in dimensional regularization the corresponding poles cancel at
D = 4, yet a finite scale-independent ambiguity remains.

To make the cancellation of divergences more explicit we read off finite
coefficients, γi,N via

3m4a0 − 4m2a1 + 8a2 =
1
π

∑

i,N

γi,N

∫
d3rL(N)

i . (8.65)

In principle, the γi,N are identified from the chiral perturbation expansion at
one loop. Naturally, only those for the low chiral orders are known [68]. The
divergent contributions are compensated by counterterms

Esub + Ec.t. = −
∫

d3x c
(1,R)
i,N (μ)L(N)

i

c
(1,R)
i,N (μ) = lim

D→4

[
c
(1)
i,N (D,μ) − γi,N

16π2
λ(D)

]
, (8.66)

with the soliton configuration substituted in L(N)
i . The second equation defines

renormalized counterterm coefficients and the invariance discussed after (8.63)
suggests c(1,R)

i,N (μ) = c
(1,R)
i,N (mρ)− γi,N

16π2 ln (μ/mρ) where, in the scenario of chiral
perturbation theory, the ρ-meson mass is chosen as absolute scale.

The classical energy is computed with c(1)i,N (D,μ) → c
(1,R)
i,N (μ) in (8.58); so

the scale dependence propagates to Ecl = Ecl(μ), such that the total energy

Etot = Ecl(μ) + ΔE(μ) , (8.67)

is scale independent.
As discussed, in general a residual scale dependence emerges in the ac-

tual calculation. The numerical results from [66] show only a mild scale de-
pendence. This mitigates the non-renormalizability problem in chiral soliton
models. Two entries have proven important to reach that result:

1. The full scale dependence is kept for the counterterms that are of the same
form as the tree level terms.

2. The field configuration must be taken at the stationary point, i.e., the
soliton. Then the scale dependence from the soliton emerges at O (1/NC).

Especially issue (2) shows that this procedure does not have much in com-
mon with conventional renormalization which must be applicable to all field
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Table 8.6. Quantum corrections computed in the Skyrme model for the renormal-
ized Skyrme constant e(0) + e(1,R)(mρ) = 4.25. Results taken from [66]. The electric
isoscalar radius shown here differs from that in table 5.1 by the vector meson ex-
change contribution, cf. (7.14)

classical one loop total expt.

Etot (MeV) 1629 −683 946 939
gA 0.91 −0.25 0.66 1.26
μI=1 1.62 0.62 2.24 2.35
r2E,I=0 (fm2) 0.62 −0.11 0.51 0.62
r2M,I=1 (fm2) 0.77 −0.13 0.64 0.73
σ (MeV) 54 −22 32 60-80

configurations. Nevertheless it is a worthwhile study to obtain valuable in-
formation about the structure of quantum corrections to baryon properties,
in particular because the too large prediction for the absolute baryon masses
at the classical level is unsettling. The quantum corrections to nucleon ob-
servables whose tree level computation does not involve time derivatives of
the collective coordinates (angular velocities, (5.16)) require only a moderate
extension, though it is numerically exhaustive. The Lagrangian is augmented
by a small perturbation

δL = εaja(U) , (8.68)

where ja(U) is the current density for the observable. With this modification
the renormalized total energy, (8.67), turns into a function of the εa and
observables are computed from the nucleon matrix element

〈N
∣
∣
∣
∂Etot({εa})

∂εa

∣
∣
εa=0

∣
∣
∣N〉 . (8.69)

We will now discuss numerical results that stem from the above-introduced
program. We concentrate on the Skyrme model with e(0) + e(1,R)(mρ) = 4.25
because it exhibits the mildest scale dependence of all results presented in
[66]: Etot is essentially flat in the regime μ = 500 . . .1100 MeV.

The most important observation is the fact that the classical energy in-
deed has sizable quantum corrections that cause a reduction of about 40% and
bring the total energy close to the actual nucleon mass. A major share of this
correction is due to the zero mode as 3mπ ≈ 400 MeV. Thus the large tree level
mass mainly results from the violation of translational and rotational invari-
ances. Also in the case of the isovector magnetic moment μI=0 = (μp − μn) /2
the quantum corrections contribute very favorably to the Skyrme model pre-
diction. The corrections from quantum fluctuations to the isoscalar magnetic
moment are not considered here because they are O (1/NC). Those electro–
magnetic radii that have classical contributions are only mildly affected by
the quantum corrections. They turn out negative for all variants of the model
considered in [66]. Unfortunately, the nucleon axial charge, gA, continues to
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cause concern. Its quantum contributions point into the wrong direction and
amplify the disagreement with the empirical value.

The last row of Table 8.6 shows results for the nucleon σ term, that we
have not discussed so far. In Sect. 9.1 we will elaborate on σ in more detail.
It measures the explicit chiral symmetry breaking via the pion mass term in
the chiral Lagrangian. Its extraction from empirical data of pion nucleon scat-
tering is somewhat involved [70, 71]. Obviously, it suffers significant quantum
corrections in soliton models. This is not surprising since it must be considered
on the same level as the classical mass.

In [72, 73] quantum corrections were estimated for the three-flavor model.
The main qualitative result is the fact that the vacuum polarization energy
from kaon loops approximately compensates the rotational energy from the
collective rotations into strangeness direction (the 1/β2 piece in (6.10)). The
main contribution for this compensation originates from the kaon zero-mode
analog of the first term on the right hand side of (8.64). This teaches an
important lesson: The zero-mode contribution carries the major share of the
vacuum polarization energy. This contribution can therefore be used for a
rough estimate of the quantum correction to the nucleon mass. This was done
in [3] for the soliton of the Nambu–Jona–Lasinio model (cf. Chap. 3). This
estimate also teaches us that quantum corrections has severe consequences
when comparing energies of configurations with different baryon numbers.
Quantum corrections reduce the energy by an amount that is approximately
proportional to the number of zero modes. This number is dictated by the sym-
metries of the Lagrangian rather than the baryon number. The subtractions
for the B > 1 objects are significantly smaller than B times the subtractions
for the single Skyrmion. Eventually this reduces the soliton model predictions
for binding energies of compound baryons considerably. We will return to that
issue in the context of the H-dibaryon in Sect. 10.6.
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9

Exotic Baryons

This topic became very popular after the LEPS collaboration announced the
observation of a very narrow strangeness S = +1 baryon [1]. Typically, a
width of at most some 10 MeV is quoted, an order of magnitude less than
ordinary hadronic widths! Due to its quantum numbers, such a state cannot
be built from three quarks. It must contain (at least) four quarks and an anti-
quark. Here soliton models played a very decisive role because that search was
initiated by a paper from Diakonov et al. [2]. Even though the calculations
from Diakonov et al. are just a little better than a guess (as we will see in the
course of this chapter), the apparent agreement with the observations from
LEPS initiated many more experimental analysis and theoretical studies.1

By now a second round of experiments with significant higher statistics
has been completed. Most of them do not confirm earlier claims of pentaquark
findings, at least with regard to a very narrow light pentaquark.2

The soliton model calculations of [2, 5] may have been most influential
on the pentaquark front. They have triggered the interest in the field of both
exotic baryons and soliton models en bloc. Larger parts of this chapter deal
with working out the assumptions that underly those results. A major as-
sumption is the use of the SU(3) rigid rotator approach. Though we have
good arguments in favor of this approach, cf. Chap. 6, we must not forget
that it is an approximation to quantizing the full system. Within that ap-
proach as many parameters of collective coordinate operators, e.g., moments
of inertia, as possible were related to empirical data rather than evaluating
them in a particular chiral model. For that reason, the resulting predictions
are often claimed to be model independent. In a sense, that scenario can be
viewed as using the optimal soliton model. If indeed these predictions were
absolutely model independent, their failure to match data would immediately
imply the failure of all chiral soliton models. Such a conclusion is definitely

1 The numerous papers that have appeared since then may be downloaded from
http://www.rcnp.osaka-u.ac.jp/~hyodo/research/Thetapub.html.

2 At the time of writing, [3, 4] fairly account for the experimental situation.
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premature when profound assumptions enter. Thus, there is a general interest
to elaborate how rigorous these results really are. For this purpose, we will
closely follow and review the arguments of [2, 5] in Sects. 9.1 and 9.3 without
failing to critically intervene when appropriate.

9.1 Exotic Flavor Structure and Spectrum

In Chap. 8, we have seen that anti-decuplet baryons naturally emerge in the
rigid rotator treatment of soliton models. That representation is depicted in
Fig. 6.3. Most interesting are the states at the top and bottom of that dia-
gram. At the top we have the Θ+ with hypercharge Y = +2, i.e., strangeness
S = 1. In the quark model picture, this necessarily requires an anti-strange
quark constituent, the flavor structure is uudds. The states at the bottom
have isospin I = 3/2 and strangeness S = −2. The member at the far right of
this isospin multiplet possesses the minimal quark model content uudss. Ob-
viously, the anti-decuplet baryons do not correspond to ordinary quark model
states with three constituents. In that sense, they are exotic and require (at
least) five constituents, therefore the notation pentaquarks.

In soliton models, the anti-decuplet baryons (and those from other higher
dimensional representations) appear as collective soliton excitations whose
energy gap to the nucleon

M10 −M8 =
3

2β2
+ flavor sym. breaking cont. (9.1)

may be as low as 400 MeV [6, 7, 8, 9], depending on the model prediction for
the moment of inertia β2 cf. (6.7). This is different from the quark model, in
which at least some 600 MeV is required to construct these states from the
mere addition of two constituents.3 There is another very noticeable difference
to quark models where four quarks and an anti-quark in the orbital ground
states build a negative parity baryon. In the soliton model, the pentaquarks
from the anti-decuplet can be understood as flavor excitations of the nucleon,
whence they should carry positive parity.

Equation (9.1) unfortunately also hints a dilemma of the soliton approach.
A dependable prediction for the pentaquark spectrum relies on the solid
knowledge of the inertia parameter β2. However, model predictions for β2

vary strongly [11, 12]. It is thus desirable to find some model-independent re-
sult for β2. In [2], it was therefore suggested to identify the P11(1720) nucleon
resonance as the nucleon-type state in the anti-decuplet to fix the scale for β2.
As we have already observed in Sect. 8.5 and will further discuss in Sect. 9.2,
this assumption is anything but rock solid because it does not consider mix-
ing with states that are outside the rigid rotator approach, which unavoidably
occurs for P11(1720). By ignoring this mixing, this identification falls back

3 See [10] for an exhaustive discussion of pentaquarks in quark models.
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on the level of a model assumption. Still, just choosing a value for β2 is not
sufficient to predict the pentaquark mass without reference to a specific rigid
rotator model, as flavor symmetry breaking is not yet accounted for. In the
next step, it was then assumed that symmetry breaking is only moderate so
that the expansion can be truncated after the linear order. Symmetry break-
ing contributions that involve angular velocities were also kept only to linear
order. With these approximations, the general SU(2) invariant form of the
symmetry breaking part of the Hamiltonian reads, cf. (6.24) and (6.34),

Hsb =
1
2
γ (1 −D88) + α1

3∑

i=1

D8iRi + β1

7∑

α=4

D8αRα

=
1
2
γ + α̃D88 + β̃Y +

γ̃√
3

3∑

i=1

D8iJi , (9.2)

where the hypercharge Y = 2√
3

∑8
a=1D8aRa is introduced and the quantiza-

tion rules (6.8) are used to make contact with the notation of [2]: α̃+β̃ = −γ/2,
etc. We recall from Chap. 6 that the β̃ and γ̃ terms are not contained in the
Skyrme model and that the α̃ term is the dominating symmetry breaking
term in all known soliton models. Continuing to restrict oneself to linear or-
der in flavor symmetry breaking to compute the mass splittings4 among the
spin 1

2 and 3
2 baryons shows that they are fully determined by the two linear

combinations 2α̃ + 3γ̃ and 2α̃ + 16β̃ − 5γ̃. Hence, it is impossible to deter-
mine these three parameters from the spectrum without reference to a specific
soliton model. In [2], it was suggested to determine the remaining symmetry
breaking parameter from the pion–nucleon σ-term. We have already encoun-
tered that quantity in Sect. 8.6 and we will now discuss its computation in
chiral soliton models in more detail. Conventionally, the σ-term is defined as
the nucleon matrix element of the equal time double commutator of the axial
generators, Q5

i , with the Hamiltonian [14]

σ =
1
3

3∑

i=1

〈N |
[
Q5
i ,
[
Q5
i , H

]]
|N〉 . (9.3)

Here we only consider zero momentum transfer for this factor. Equation (9.3)
is the quadratic term in the expansion of the small parameter ε that enters
the axial transformation of the chiral field, cf. (2.30) U → eiε·τUeiε·τ . Here we
already encounter a problem for the model-independent approach: this axial
transformation cannot be transferred to the collective coordinates, A(t), that
only parameterize vector degrees of freedom.

Obviously mass terms violate chiral symmetry. The second-order variation
of the pion mass term, (4.25), yields
4 According to Sect. 6.4, this may be too crude a restriction. An exact diagonaliza-

tion of Hsb was performed in [13] for pentaquark studies.
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1
3

3∑

i=1

[
Q5
i ,
[
Q5
i , H

]]
= m2

πf
2
πtr

(
U + U † − 2

)
. (9.4)

This indeed suggests that the σ-terms contain information about the symme-
try breaking parameter γ (6.25). The rigid rotator analysis yields [15]

σ =
2 + 〈N |D88|N〉

2(ξ − 1)
γ , (9.5)

where ξ = 2(fKmK/fπmπ)2−1 = 2ms/(mu+md). The latter identification as
a ratio of current quark masses is suggested by the Gell-Mann–Oakes–Renner
relation [16] and can be motivated from the pole condition to (2.22) in the
approximation that the constituent quark masses are flavor invariant. Using
the techniques of Sect. 6.4 shows that the nucleon matrix element of D88 is a
monotonous function of flavor symmetry breaking that varies between 3

10 and
1 for the extreme cases of mK = mπ and mK → ∞. Furthermore, ξ � 1 so
that the crude approximation

σ =
3
2ξ
γ ⇔ α̃+ β̃ = − ξ

3
σ (9.6)

seems helpful to obtain the third empirical information for the parameters in
(9.2). We stress, however, that this information is model dependent and that
the analog of the γ̃ term (that naturally arises) is not taken into account. In
principle, it must contribute to σ because any vector symmetry breaker by
definition also violates the axial symmetry.5 Furthermore, we have observed
in Table 8.6 that σ is subject to sizable quantum corrections, after all it
behaves like absolute energies rather than mass differences. Putting things
together, (9.5), is only a rough guide to the parameters in Hsb. With the so-
adopted parameters, the estimated masses of anti-decuplet pentaquarks are
shown in Table 9.1. The authors of [5] used various model results for some of
the parameters in Hsb to estimate the masses of Θ and Ξ 3

2
. Additional errors

stem from the experimental uncertainty of the σ term. (In [2] only the then
actual central value σ = 45 MeV was considered.) Subsequently, they used
the empirical data for these baryons [1, 17] to predict the masses of the anti-
decuplet N and Σ, the so-called crypto-exotic pentaquarks. In view of these
errors, it is amazing to see how fortuitously the early results [2] coincided
with the first data [1] of pentaquark masses. Taking all the facts together,
5 To leading order in flavor symmetry breaking, the correct relation is

(ξ − 1)σ = −
〈
N
∣∣
∣2α̃+ 3β̃ + α̃D88 − γ̃√

3

3∑

i=1

D8iJi

∣∣
∣N
〉
.

The last collective coordinate matrix element is small and may indeed be neglected
while the approximate treatment of D88 causes errors on σ of up to 10 MeV for
the parameters of [5].
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Table 9.1. Pentaquark spectrum in rigid rotator based approaches. DPP [2] is
discussed in the text. EKP [5] used various model results for parameters in Hsb to
estimate the Θ and Ξ 3

2
masses. Subsequently, they used data for these baryons [1,

17] to predict the masses of the anti-decuplet N and Σ. The WK calculation [13]
diagonalized the collective coordinate Hamiltonian exactly and fitted parameters
from the ordinary spin- 1

2
baryons as well as Θ. All data are in MeV

DPP EKP WK expt. ?

Θ 1530 1545 ± 110 1540 ∼ 1540 [1]
N input 1646 1650
Σ 1890 1745 1750
Ξ 3

2
2070 1878 ± 92 1780 ∼ 1862 [17]

that calculation was not much more than a good guess. This becomes even
more obvious when observing that its prediction for the Ξ3/2 fails to reproduce
empirical datum by a couple of hundred MeV. (So far only a single such
empirical result has been reported [17], which has never been reproduced.)

Approaches that pursue the opposite path, i.e., fitting parameters in Hsb

from data for pentaquark masses and estimating the σ term via (9.6) [18],
must be regarded with even more skepticism.

9.2 Spectrum and Mixing Mechanisms

The above discussion assumes that nucleon and Σ-type states in the anti-
decuplet are observable baryons, at least in the absence of flavor symmetry
breaking. With symmetry breaking switched on, SU(3) quantum numbers are
no longer conserved and mixing with, e.g., (ordinary) octet baryons occurs.
Then there is also no reason for these states not to mix with radial excita-
tions of (ordinary) octet baryons as well. This is even more likely because the
mass gap between such radial excitations and anti-decuplet states is presum-
ably small, cf. (9.1). A reliable study of pentaquark physics may not eschew
that mixing. In view of the approaches discussed above, there are specific
reasons to study this mixing in soliton models: (i) the identification of the
anti-decuplet nucleon as N(1710) yielded quite a heavy Ξ3/2. Regardless of
whether or not the datum of [17] withstands future experimental analysis, it
seems unlikely that the mass splitting between the top and bottom states in
the anti-decuplet is 100 MeV larger than in the decuplet; (ii) the parameters
of [5] suggest an additional nucleon state at 1650 MeV for which there is only
little experimental indication.6 A first thorough soliton model study of the
mixing phenomena between exotic states and radial excitations of ordinary
baryons was performed in [20, 21]. The immediate consequences for the Θ+

pentaquark were investigated in [22].
6 Reference [19] reports a narrow structure around 1.65 GeV in η-photoproduction

off the neutron.
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The interplay between flavor rotational and radial excitations is studied
by treating the soliton extension as a dynamical quantity, cf. Sect. 8.5. When
we generalize (8.50) to flavor SU(3), the Hamiltonian is essentially augmented
by two terms,

H3fl =
1

2β(x)

7∑

α=4

R2
α and Hsb = s(x) [1 −D88(A)] . (9.7)

They originate from the collective rotations into strangeness direction and
the flavor symmetry breaking, respectively. As in (8.49), the dependence on
the scaling variable x is computed from the classical soliton. Since Hsb con-
tains both the collective scaling and rotation variables explicitly, a simple
separation ansatz as in the two-flavor problem is no longer possible. Rather
a two-step program is pursued. First, a basis is constructed by diagonalizing
the Hamiltonian without the D88 piece. At this stage, flavor representation
mixing does not yet occur and the eigenstates are products |μ, nμ〉 = |μ〉|nμ〉,
where μ denotes the SU(3) representation and nμ is the corresponding radial
(or breathing) quantum number. We denote the eigenvalues of this truncated
Hamiltonian Eμ,nμ and compute matrix elements of the full Hamiltonian:

Hμ,nμ;μ′,n′
μ′ = Eμ,nμδμ,μ′δnμ,n′

μ′ − 〈μ|D88(A)|μ′〉〈nμ|s(x)|n′
μ′ 〉 . (9.8)

The linear combinations

|B,m〉 =
∑

μ,nμ

C(B,m)
μ,nμ

|μ, nμ〉 (9.9)

diagonalize this Hamiltonian with energy eigenvalues EB,m. Here B refers to
the baryon quantum numbers while m counts its excitations. We have already
presented model results for the baryons with non-exotic quantum numbers in
Table 8.5. The corresponding results for the pentaquarks (Θ+ and Ξ3/2) are
added in Fig. 9.1. Ignoring for the time being excited states that would be
absent if the 27-plet baryons were infinitely heavy (indicated by dashed lines)
and counting the isospin degeneracy, there are 18 states predicted in the energy
regime up to about 2 GeV. Thus, it is plausible that the Jπ = 1

2

+ baryons in
the energy regime between 1.3 and 1.8 GeV may be viewed as members of the
direct sum 8 ⊕ 10 of SUF(3) representations, modulo representation mixing
induced by flavor symmetry breaking. These octet states would be (radial)
excitations of the ordinary spin- 1

2 baryons. In such an 8⊕ 10 scenario, the Λ
and Ξ resonances are pure octet while Θ+ and Ξ3/2 are pure anti-decuplet.
Mixing can only occur for nucleon and Σ-type states. There are two approaches
to arrange the excited baryons within such a direct sum. In [23], a diquark
picture has been adopted that leads to an ideal mixing between baryons of
identical quantum numbers of the 8 and 10 representations such that the
eigenstates have minimal or maximal strangeness content. Then, the octet
nucleon and the anti-decuplet nucleon (N ′ in Fig. 6.3) mix to build eigenstates
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E[GeV]

1.5

1.8

sSM (Sec. 8.5)

|N,1〉

|Λ,1〉
|Σ,1〉

|Ξ,1〉

|N,2〉

|Σ,2〉

|Θ+,0〉

|Ξ3/2,0〉

|Λ,2〉

|N,3〉

JW [23]

Θ+

N

Λ,Σ

NS

ΣS

Ξ, Ξ3/2

DP [24]

A

N1 N1

N2
N2

Λ Λ
Σ1

Σ1

Σ2
Σ2

Ξ Ξ

Ξ3/2 Ξ3/2

Θ+ Θ+

B

Fig. 9.1. Predicted spectra of baryons with J = 1
2

in various models for pen-
taquarks. For the non-exotic states, the model results are taken from Table 8.5 with
the physical nucleon. JW denotes a calculation within the diquark model with pa-
rameters M0 = 1.44 GeV, ms = 0.11 GeV and α = 0.06 GeV in the mass formula
of [23]. In columns A and B, the results for the two scenarios of [24] are shown. We
have adopted the notation used in the respective papers

with the quark structure uud(ūu) and uud(s̄s), modulo their isospin partners.
The baryon mass formula developed in [23] essentially counts the number
of strange quarks and anti-quarks of the considered resonance. In [24], the
8 ⊕ 10 decomposition was taken as starting point. For these octet and anti-
decuplet states, the pattern of flavor symmetry breaking was adopted from
the first-order calculation in soliton models. Additionally, it was assumed that
Ξ(1690)—whose spin–parity quantum numbers are yet to be determined [25]—
was the octet partner of Λ(1600) to estimate the octet mass parameters and
fix the anti-decuplet mass parameters from Θ+(1535) and Ξ3/2(1862). With
that input, the authors [24] computed the mixing angle between the 8 and
10 representations and predicted so far unobserved nucleon and Σ resonances
in the 1650 − 1810 MeV region. In Fig. 9.1, we compare the mass spectra of
these two 8 ⊕ 10 scenarios with the present model calculation. Surprisingly,
the spectra obtained in the current model calculation and that of the ideal
mixing diquark scenario are very similar. The most apparent similarity is the
(almost) degeneracy of the Ξ3/2 and the first-excited Ξ. The model of [23] also
has degenerate Λ and Σ states. In the present approach, such a degeneracy is
also indicated but not very pronounced. Furthermore, both treatments yield
the second-excited Σ way above the Ξ3/2 as well as a large gap between the
first-exited Σ and the second-exited nucleon. The most obvious difference
in the analysis of [24] is the large gap between Ξ and Ξ3/2, with the second-
excited Σ sitting in between. For that conclusion, it was crucial to assume that
the Ξ(1690) forms an SU(3) multiplet with the Λ(1600) that has Jπ = 1

2

+.
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If this assumption was true, we would expect such a Ξ state in quark model
calculations. However, in that model, the first-excited Ξ with Jπ = 1

2

+ shows
up significantly higher, at about 1850 MeV [26], i.e., similar to the present
prediction for |Ξ, 1〉, cf. Table 8.5. As already argued in Sect. 8.5, it seems
more plausible to assign Jπ = 1

2

+ to Ξ(1950).
In the nucleon channel, the model calculations yield the m = 3 state to be

only about 40 MeV higher than the m = 2 state, i.e., still within the regime
where the model is assumed to be applicable. This is interesting because data
analysis [27, 28] suggests that there might exist more than only one nucleon
resonance in the concerned energy region.

Although the spectrum in the present model turns out to be similar to the
diquark scenario, the mixing pattern is considerably more complicated than
an ideal direct sum 8 ⊕ 10. In Table 9.2, we give the mixing in the form of
the probabilities

Pμ =
∑

nμ

[
C(B,m)
μ,nμ

]2
(9.10)

that sum the squared amplitudes within a given SU(3) multiplet. In the 8⊕10
scenarios of [23, 24], both the |Λ, 1〉 and the |Ξ, 1〉 would be pure octet states.
In the present model calculation, we find, however, that there is significant
admixture of the partners from the 27-plet, at the order of 40% in Pμ. Fur-
thermore, the states |N, 1〉 and |N, 2〉 as well as |Σ, 1〉 and |Σ, 2〉 are not simple
linear combinations of the corresponding octet and anti-decuplet states but
contain sizable contributions from their partners in the 27-plet. In [23], the
mixing pattern for the 8 and 10 states is ideal for the strangeness content,
i.e., N and Σ have minimal strangeness content while it is maximal for NS

and ΣS.

Table 9.2. Mixing pattern as measured by the probabilities Pμ, (9.10), for the

low-lying Jπ = 1
2

+
baryons and the states shown in Fig. 6.3

B,m μ = 8 μ = 10 μ = 27 μ = 35 μ = 64

|N, 0〉 0.87 0.06 0.05 0.01 0.00
|N, 1〉 0.59 0.15 0.16 0.05 0.03
|N, 2〉 0.12 0.68 0.10 0.05 0.04
|N, 3〉 0.57 0.17 0.08 0.12 0.03
|Λ, 0〉 0.93 – 0.06 – 0.00
|Λ, 1〉 0.58 – 0.34 – 0.07
|Λ, 2〉 0.58 – 0.23 – 0.17
|Σ, 0〉 0.88 0.08 0.04 0.01 0.00
|Σ, 1〉 0.37 0.33 0.15 0.10 0.03
|Σ, 2〉 0.11 0.69 0.13 0.04 0.04
|Ξ, 0〉 0.96 – 0.04 – 0.00
|Ξ, 1〉 0.49 – 0.42 – 0.07
|Θ+, 0〉 – 0.85 – 0.14 –
|Ξ3/2, 0〉 – 0.76 0.12 0.10 0.01
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There is an important effect of mixing between radially excited octet and
anti-decuplet nucleon states. We can compute transition magnetic moments
of anti-decuplet to octet states by evaluating pertinent collective coordinate
matrix elements as we did in (7.7). In the flavor symmetric limit, the pro-
ton transition moment vanishes while it is comparable to ordinary magnetic
moments in the neutron channel [29], cf. last entry in Table 9.3. Once the
breathing mode is elevated to a dynamical degree of freedom (and symmetry
breaking is included), the computations become more involved. The coeffi-
cient functions Vi parametrically depend on the scaling variable and we have
to sandwich them between the states |nμ〉. Subsequently, we project these ma-
trix elements onto physical baryon states via the configuration mixing, (9.9).
The numerical results for the scalar extended soliton model (Sect. 8.5) are
listed in Table 9.3. For completeness, the predictions from that model for
the magnetic moments of the ordinary spin- 1

2 baryons are also included for
which the now dynamical breathing mode produces the proper description of
the empirically observed deviation from the U -spin symmetry, cf. discussion
after (7.8). This is not surprising since, similarly to the slow rotator approach
introduced in Sect. 6.5, the current treatment allows the soliton configuration
to respond to flavor symmetry breaking. Here this feature is incorporated by
Hsb, (9.7), that generates differences in the radial parts of the spin- 1

2 baryons.
Apart from the problem of too small absolute magnetic moments (that seems
common to most soliton models), we find agreement with the empirical data
that is superior to the rigid rotator approach, cf. Table 7.1. So we should
take seriously the predictions for the transition magnetic moments of the
crypto-exotic nucleon-type baryons in the breathing mode treatment. They
are shown in Table 9.3. Most importantly, we observe that the rigid rotator

Table 9.3. Magnetic moments in the breathing mode quantization scheme. Re-
sults are given in nucleon magnetons (n.m.) and normalized to the proton magnetic
moment, μp. The upper and lower parts list the magnetic moments of the spin- 1

2

ground state baryons and the magnetic moments of excited nucleons in the proton
and neutron channels, respectively. Table adopted from [21, 30]

p n Λ Σ+ Σ− Ξ0 Ξ− Σ0 → Λ
μ (n.m.) 2.21 −1.84 −0.52 1.82 −0.94 −1.06 −0.41 −1.37

μ/μp 1 −0.83 −0.24 0.82 −0.42 −0.48 −0.19 −0.62
(μ/μp)exp. 1 −0.68 −0.22 0.87 −0.42 −0.45 −0.25 −0.58

proton neutron

m μ (n.m.) μ/μp μ (n.m.) μ/μp

1 (Roper) −0.90 −0.41 0.89 0.40
2 (N1710) −0.28 −0.13 −0.17 −0.08
3 −0.24 −0.11 −0.19 −0.09

|8, 1〉 → |8, 0〉 −0.53 −0.24 0.40 0.18
|10, 0〉 → |8, 0〉 0.00 0.00 −0.62 −0.28
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prediction, according to which the transition magnetic moment of the crypto-
exotic proton is strongly suppressed compared to that of the neutron [29], is
almost reversed. This must be attributed to sizable admixtures of radial octet
excitations in the N(1710) state.

Though this description of excited nucleons may be somewhat crude as it
incorporates only a few modes collectively, we definitely learn that admixtures
of radially excited states, against which there is no general argument, play a
significant role. In particular, they drastically modify the predicted magnetic
part of the transition to the ground state nucleon.

9.3 The Myth of the Narrow Pentaquark

Much of the ado around pentaquarks has been ignited by the prediction of a
very narrow pentaquark in [2]. Here we will illustrate that (ill)famed calcula-
tion because we must address the question of whether it is a rigorous prediction
of chiral soliton models. Only if it were, the non-observation of a narrow pen-
taquark (which be seems almost certain by now [3, 4]) would frame a severe
problem for soliton models. The small width prediction seemed welcome to
motivate exhaustive searches for pentaquarks. Only such narrow states could
have escaped earlier searches and/or could be identified without laborious
phase shift analysis of (new) data. In the course of this and the following sec-
tions, we will observe that the statement that chiral soliton models predict a
narrow pentaquark baryon in the S = +1 channel essentially is a myth. This
myth has been aggressively sold by some and, unfortunately, bought as truth
by too many.

Of course, the non-observation of a narrow pentaquark does not completely
forbid its existence. In that context, we recall indications for pentaquarks seen
earlier in kaon–nucleon scattering [31, 32, 33]. At that time, the quantum
numbers P01(1830), P13(1810), D03(1790) and D15(2070) were assigned to
the structures seen in the S = +1 channel. In chiral soliton models, the latter
can only be interpreted as a quadrupole excitation of a rotational ground state
in the P01 channel. The structure observed in that channel is actually higher
in energy than both the P13 and the D03 structures. It is thus suggestive that
this P01 structure is not the rotational ground state whose mass should thus
be significantly lower than 1790 MeV. This would be a further hint for a Θ+

pentaquark with MΘ � 1700 MeV.
We have already learned in Sect. 8.3 that it is difficult to compute widths

for hadronic decays of resonances in soliton models. The essential reason is
that mesons and baryons are described by the same field variable, the chiral
field U . This distinguishes them drastically from models with explicit baryon
(B) and meson (Φ) fields that commonly have trilinear Yukawa interactions
(the fields are multi-valued in flavor space):

Lint =
gφBB′

MB +M ′
B

Ψ̄Bγ5γμ (∂μΦ)ΨB′ . (9.11)



9.3 The Myth of the Narrow Pentaquark 191

The derivative interaction reflects chiral symmetry and γ5 the pseudoscalar
nature of the lightest mesons. With this interaction, the computation of decay
widths for the hadronic decay of the excited baryon (B′) is standard:

Γ(B′ → BΦ) =
|M|2

8πMBMB′
|pΦ| , (9.12)

where M is the spin–flavor matrix element resulting from (9.11). The over-
bar denotes summing and averaging over spins. Since M is linear in both,
the coupling gφBB′ and the momentum of the final meson, pΦ (due to the
pseudoscalar nature of Φ), we have Γ ∝ g2

φBB′ |pΦ|3.
In soliton models, the situation is significantly different. Since the soliton

is a stationary point of the action, there is no straightforward identification of
an interaction which is linear in the asymptotic meson field and that provides
the coupling constant gφBB′ . As discussed in Sect. 8.3, this subtlety in known
as the Yukawa problem. Hence profound assumptions are necessary to make
use of (9.12). The profound assumption often made in soliton models is to
generalize the Goldberger–Treimann relation (GTR), (5.62), to the SU(3)
relatives of pions and nucleons:

1
2

(MB +MB′) gBB
′

A = fφgφBB′ . (9.13)

Certainly, one should doubt that this SU(3) generalization is as fundamental
as (5.62). After all, the latter only adheres to asymptotically stable states. The
profound assumption then computes gBB

′
A as axial current transition matrix

elements uses (9.13) to identify gφBB′ and substitutes it into (9.12) to compute
the decay width. In the rigid rotator approach, the axial current operator has
the model independent from, cf. (7.16),

Aai =
∑

k=1,2,3

A
(0)
ik (x)Dak +

∑

k=1,2,3
α,β=4,...,7

A
(1)
ik (x) dkαβDaαRβ +

∑

k=1,2,3

A
(2)
ik (x)Da8Rk

(9.14)
up to omitted flavor symmetry breaking. The structure of the coefficient func-
tions is A(m)

ik (x) = A
(m)
1 (r)δik+A(m)

2 (r)x̂ix̂k. The A(m)
1,2 (r) are radial functions

through the profile function F (r). It is legitimate to use isospin invariance and
compute gA as the nucleon matrix element 〈2A3

3〉. Then (9.13) implies [2, 5]

gπNN =
7
10

[
G0 +

1
2
G1 +

1
14
G2

]

with

Gm = −8πMN

3fπ

∫ ∞

0

drr2
[
A

(m)
1 (r) +

1
3
A

(m)
2 (r)

]
. (9.15)

The relative coefficients stem from the nucleon matrix elements of the col-
lective coordinate operators in (9.14). They are readily obtained from SU(3)
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Clebsch–Gordan coefficients, e.g., 〈p ↑ |D33|p ↑〉 = −7/30 (again omitting
flavor symmetry breaking for simplicity). Generalizing the above result for
gπNN to flavor SU(3) yields coupling constants

G10 = G0 +
1
2
G1 and G10 = G0 −G1 −

1
2
G2 (9.16)

that, respectively, measure the coupling of baryons from the decuplet (Δ)
and the anti-decuplet (Θ+) to those in the octet (nucleon, hyperons) via
(9.13). These coupling constants enter the matrix element M and yield
widths for hadronic baryon decays via (9.12): Γ(Δ → Nπ) ∝ G2

10|pπ|3 and
Γ(Θ+ → NK) ∝ G2

10
|pK |3. The omitted constants of proportionality are

merely kinematical factors. Model calculations [11, 34, 35] indicate that G0

and G1 are comparable. That is, significant cancellations cause G10 to be
rather small. This has been the main argument for claiming a Θ+ width of
the order of only a few MeV, or even less. For example, [36] quotes a value
as small as 2.3 MeV. The cancellations between G0 and G1 persist when the
number (NC) of color degrees of freedom is sent to infinity [37]. This completes
the way of thinking about pentaquark decay widths put forward in [2, 5] and
frequently adopted later on.7 Yet a careful analysis shows that correcting the
original computation of [2] for an intrinsic arithmetical error [22, 38]8 increases
the estimate for Γ(Θ → KN) to about 30 or40 MeV, which is not so small
anymore and thus less exciting.

Further subtleties doubt this GTR-based approach already afore we test
it against incontrovertible results from the phase shift analysis:

• The classical field equations affect only the first part ∂iA
(0)
ik = O

(
m2
π

)
.

The last term (A(2)) vanishes or is at least small because it essentially is
the axial singlet matrix element. On the other hand, ∂iA

(1)
ik is not part of

any equation of motion. Hence, the axial current computed solely from the
classical profile functions violates PCAC (Induced kaon fields were consid-
ered as an early attempt to solve the problem, cf. Appendix C in [11]). As
a consequence, the use of GTR in SU(3) soliton models is questionable
because a major entry is not met.

• The above derivation only involves the classical soliton and there is no
reference to asymptotic meson states in the decay products. In two-flavor
soliton models the GTR arises from the long-range behavior of the soliton
profile [41] and has been identified from the one-pion exchange contribution
to the nucleon–nucleon interaction; see also (5.60) and Sect. 10.3.

However, this process does not require asymptotic pion states. Also, that
argument strongly relies on pions being massless. For mπ > 0, gA cannot
be read off from the long range behavior and thus not related to gπNN .

7 Many additional references on this approach can be traced from
http://www.rcnp.osaka-u.ac.jp/~hyodo/research/Thetapub.html.

8 The interested reader may want to survey [39, 40] for a striking example for
reinterpretation of reproducible errors.
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Fig. 9.2. Θ+ resonance exchange buried in kaon–nucleon scattering

It is thus not surprising that SU(3) Skyrme model calculations severely fail
to reproduce GTR when gπNN is extracted from the long-range behavior of
the soliton [34]. Evidently, it is not possible to directly map soliton models
onto the Yukawa model. Hence, any soliton model motivated computation of
pentaquark (and probably any other excited baryon) widths that is based on
the identification of an effective Yukawa coupling constant must be doubted.

In the next section, we will describe the soliton model approach to kaon–
nucleon scattering in the spin–isospin channel with pentaquark quantum num-
bers. As in experiment, that process should reflect all information about pen-
taquark widths. A decisive feature of that approach is its consistency with
the large-NC limit, in which the model prediction for the scattering data is
unambiguously known from the adiabatic approximation, cf. Sect. 8.1. Since
that treatment is quite technical, we will state a main conclusion already here:
only a single collective coordinate operator contributes to the Θ+ width func-
tion, at least in the flavor symmetric limit. This definitely proves incorrect the
cancellation scenario for G10 and the resultant small width prediction. Earlier
we asked whether or not the small width prediction would be a rigorous chiral
soliton model prediction. Given the precedent discussion, we obviously must
deny this question.

Though unlikely, there is still a scenario for a narrow pentaquark. It could
couple weakly to a bound state, e.g., in the vector meson channel. This mech-
anism is quite general and this possibility can also be inferred from soli-
ton model studies as, e.g., Fig. 7.5a in [42], though that concerns a differ-
ent process.

9.4 Rigid Rotator at Arbitrary NC

We now want to work toward a better understanding of the decay Θ → KN
within chiral soliton models. This is actually a subprocess of kaon–nucleon
scattering in the S = +1 channel as depicted in Fig. 9.2. In Sect. 8.1, we have
learned that we can compute the scattering data reliably to O

(
N0

C

)
within

a soliton model. Here we will discuss the spectrum of the rigid rotator at
arbitrary NC to establish that the mass gap between the Θ+ and the nucleon
is O

(
N0

C

)
and thus non-zero in the large-NC limit. Hence, the Θ+ is unstable

for NC → ∞ and we should be able to extract its width from scattering
computations, at least for NC → ∞. That will be subject of the next section.
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In Sect. 6.6, we found that the BSA is exact for NC → ∞. In this limit, the
RRA should therefore reproduce the BSA results when the fluctuations are
constrained to the collective modes of the soliton, (6.49), (6.50) and (6.51).
We will first explore the RRA findings that emerge from the use of (D.9)
with YR = NC/3 analytically in the flavor symmetric case and then present
numerical results for the general case.

In (6.12), (6.13) and (6.14), we have derived the general conditions for
the eigenstates within the RRA when symmetry breaking is ignored. Equa-
tion (6.11) describes the corresponding spectrum. Now we fix B = 1 and
arrange these states conveniently according to increasing triality, t, that has
been defined in (6.12). For t = 0 they are

(p, q) =
(

2J,
NC − 2J

2

)
, (9.17)

where J = 1
2 ,

3
2 , . . . ,

NC
2 (= mmax in the notation of Sect. 6.2) are the allowed

spin eigenvalues, i.e.,
∑3
i=1〈R2

i 〉 = J(J + 1). From (6.11), we compute the
corresponding energies

E0 = Ecl +
J(J + 1)

2α2
+
NC

4β2
. (9.18)

This coincides with the SU(2) mass formula, (5.19), up to an additive constant
for nucleon and Δ-type states. For t = 1 we find

(p, q) =
(

2J ∓ 1,
NC + 3

2
− 2J ∓ 1

2

)
,

E∓ = Ecl +
J(J + 1)

2α2
+

2NC + 4 ∓ (2J + 1)
4β2

, (9.19)

with J = 1
2 ,

3
2 , . . . ,

NC
2 + 1.

The lowest lying multiplets with spins J = 1
2 and J = 3

2 are

J =
1
2

: (p, q) =
(

1,
NC − 1

2

)
,

(
0,
NC + 3

2

)
, . . . = “8”, “10”, . . .

J =
3
2

: (p, q) =
(

3,
NC − 3

2

)
,

(
2,
NC + 1

2

)
, . . . = “10”, “27”, . . . . (9.20)

In each case, the first representation stems from (9.17) while the second ones
are associated with (9.19). The numbers in quotation marks label the di-
mensionalities of the representations for NC = 3. The above assignments are
unique in soliton models and so are the flavor quantum numbers attributed
to the lowest lying baryon states within the multiplets. This is inferred from
the fact that these assignments minimize the energy functional. For example,
for large NC the symmetry breaking term contributes

γ

2
〈
1 −D88

〉
→ γ

2

(
1 − 3

NC
Y

)
= − 3γ

2NC
S (S ≤ t) (9.21)
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to the energy functional if symmetry breaking was treated in first-order per-
turbation. For finite NC, this generalizes to the fact that symmetry breaking
causes the masses of baryons within a multiplet to decrease with increasing
strangeness. For t = 0, we therefore obtain the lightest J = 1

2 baryon, the
“nucleon” with zero strangeness and isospin I = 1

2 and the lightest J = 3
2

baryon, the “Δ” with zero strangeness and isospin I = 3
2 . For t = 1, the lowest

lying “pentaquarks” with J = 1
2 and J = 3

2 carry strangeness S = +1 and
isospins I = 0 and I = 1, respectively. For finite symmetry breaking, mixing
with higher dimensional multiplets occurs. Although such non-linear effects
may not be omitted, the spin–flavor assignments are unaffected.

The lowest lying pentaquarks with S = +1 dwell in t = 1 representations.
For these pentaquarks, the two mass formulas (9.19) refer to the spin–isospin
relations I = J ∓ 1

2 . It is straightforward to derive the corresponding energies

E∓ = M +
J(J + 1)

2α2
+
NC

2β2
+

1
2β2

[
I(I + 1) − J(J + 1) +

9
4

]
. (9.22)

The terms O(1/NC) exactly match9 those in (6.45) when equating those con-
tributions to the hyperfine energies that are of quartic order in the fluctuations
to 9

8β2 . Even more, we may compute the mass difference between the nucleon
(in “8”) and pentaquarks with I = 0 and J = 1

2 (in “10”)

E10 − E8 =
NC + 3

4β2
, (9.23)

which coincides with ωΘ (6.50 with γ = 0) when NC → ∞, as it should. Thus,
we conclude that the BSA and RRA are consistent when flavor symmetry
breaking is omitted. Note that the above mass difference acquires a factor 2
for NC = 3.

For the physical case of non-zero flavor symmetry breaking, a perturbative
treatment seems tempting because it reproduces the Gell-Mann–Okubo mass
relations [43, 44] in the RRA forNC = 3 [45]. We already argued in the context
of (6.49) and (6.50) that the perturbation series in γ does not converge for the
BSA. Many pentaquark studies in the RRA treated flavor symmetry breaking
perturbatively to first or (at best) to second order [2, 5].10 This seems at odds
with the BSA. Also, the Gell-Mann–Okubo relations are not reproduced in
the BSA [11]. Hence, we have to solve the eigenvalue problem

{
M +

J(J + 1)
2α2

+
R2
α

2β2
+

1
2
γ (1 −D88)

}
Ψ = EΨ (9.24)

together with R8Ψ = NC

2
√

3
Ψ (numerically) exactly. For NC = 3, we have dis-

cussed that scenario in Sect. 6.4. It can be straightforwardly generalized by
9 Without symmetry breaking, we have ωΘ = NC/4β

2 and thus 1 − χ+ = α2/β2

in (6.51).
10 In the RRA to pentaquarks, symmetry breaking was treated exactly in [8, 13, 22,

46].
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Fig. 9.3. Mass differences at O(N0
C) computed in the Skyrme model as functions of

NC. In the RRA, they are the corresponding differences of the eigenvalues in (9.24),
while in the BSA they are extracted from (6.45). Left panel ΔS = −1; right panel
ΔS = +1. Model parameters are chosen to reproduce the Δ–N mass difference at
NC = 3

putting YR = 2R8/
√

3 = NC/3 in (D.9), together with the linear NC depen-
dencies of the functionals α2, β2 and γ via α2 → α2(NC = 3)NC/3, etc. The
only condition on NC is that it must be taken odd. For typical model parame-
ters, we display the resulting mass differences in Figs. 9.3 and 9.4. In Fig. 9.3,
we concentrate on mass differences that scale like O(N0

C), i.e., between baryons
whose strangeness quantum numbers differ by one unit. As NC → ∞, the
BSA for fluctuations in the rotational subspace predicts ωΛ and ωΘ for those
mass differences regardless of spin and isospin. Obviously this is matched by
the RRA. In Fig. 9.4, we display the mass differences that scale like O(1/NC),
i.e., we compute the hyperfine splitting in both approaches. In doing so, we
always consider baryons with identical strangeness since then the ordering am-
biguities and omissions from O(η4

α) terms in the BSA cancel. Again, perfect
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Fig. 9.4. Mass differences at O(1/NC) computed in the Skyrme model as functions
of NC. Left panel: baryons with strangeness S = 0, 1; right panel S = −1. See also
caption of Fig. 9.3
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agreement between the two approaches is observed for NC → ∞. However, at
NC = 3, sizable 1/NC corrections occur that cannot be accounted for by the
BSA.

In Sect. 9.6, we will employ the eigenfunctions of (9.24) to compute matrix
elements of collective coordinate operators for arbitrary odd NC and non-zero
symmetry breaking.

9.5 Solution to the Yukawa Problem

The discussion in Sect. 9.3 showed that chiral soliton models improbably de-
scribe pentaquark widths of the order of only a few MeV. Yet the intensive
discussion of exotic baryons has paved a way toward solving the long-standing
Yukawa problem that we first encountered in Sect. 8.3. As a matter of fact,
it concerns the description of all hadronic decays of excited baryons in soli-
ton models. So, at last, the arguable prediction of very narrow pentaquarks
nevertheless turned into a fortune for soliton models. We will explain that
solution in this section. We will give explicit formulas for the specific case of
flavor symmetry. For the general case, which is more laborious and thoroughly
discussed in [47], we will confine ourselves to the presentation of numerical
results. The main result will be the momentum-dependent width function for
the pentaquark decay that supercedes the approach of [2] that was discussed
in Sect. 9.3 .

The bold statement of having solved the Yukawa problem is based on the
fact that we have available a litmus test in the pentaquark channel. This
test can be inferred from (9.23). In contrast to the intensively discussed Δ
resonance (Sect. 8.3), the Θ+ maintains a non-zero mass gap to the nucleon
when NC is sent to infinity. Hence, its width must not vanish for NC → ∞:
Γ(Θ → KN) = O

(
N0

C

)
. Simultaneously, we know that the adiabatic approx-

imation (Sect. 8.1) is exact at this order. So we merely have to extract the
properties from the phase shifts from the solutions to (6.41) via the recou-
pling scheme from Appendix F. This is simple in the Θ+ channel because
only the intrinsic P -wave channel for kaon–nucleon scattering is affected. The
corresponding Skyrme model result for the phase shift is shown as the full
line in Fig. 9.5. We immediately observe that no clear resonance structure is
visible; the phase shift hardly reaches π/2. The absence of such a resonance
has previously lead to the criticism that no bound pentaquark existed in the
large NC limit and that it were a pure artifact of the RRA [48, 49, 50, 51].
Though this conclusion is premature, it indicates that the extraction of Θ+

properties from the phase shift is a formidable task. Essentially, we have to
disentangle the contribution from the collective modes to this phase shift.
To do so, we need to incorporate the dynamical coupling between the small
amplitude fluctuations and the collective modes. This induces couplings that
are of subleading order in the 1/NC expansion. Actually, (9.23) shows that
they must be important as the resonance energy changes by a factor two in
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Fig. 9.5. Skyrme model prediction for the phase shift in the S = +1 channel (full
line). The long–dashed line (background) gives the phase shift when the fluctuations
are constrained to be orthogonal to the rigid rotation, cf. (9.35), and the short-
dashed line is the difference between the full and long–dashed line, the resonance
phase shift

between NC = 3 . . .∞. At the end, we have to apply the litmus test: in the
limit NC → ∞, our treatment must reproduce the phase shift represented by
the full line in Fig. 9.5.

We consider (8.1)

U(x, t) = A(t)
√
U0(x) exp

[
i
fπ
λαη̃α(x, t)

]√
U0(x)A†(t) , (9.25)

for dynamical, i.e., time-dependent collective rotations, A(t) ∈ SU(3). The
fluctuations η̃α dwell in the intrinsic system as they rotate along with the
soliton. These modes differ from the ηα in Sect. 6.6 through the coupling to
A(t). An immediate problem arises for the ansatz (9.25): dynamical flavor
rotational modes are contained in both A(t) and η̃α. These double counting
effects are reflected by the linear relation (x = {t,x})

Rα := − ∂L

∂Ωα
=
√
β2

∫
d3r zαβ (x)

[
δL

δ ˙̃ηα(x)
− 2√

3
λ(r)f8βγ η̃γ(x)

]

(9.26)

between the conjugate momenta. The radial function λ(r) = NC
4f2

π
B0(r) is

proportional to the baryon density (4.51), and stems from the Wess–Zumino
term. Furthermore,
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zαβ (x) =
2fπ√
β2

sin
F (r)

2
x̂ifiβα =

z(r)√
π
x̂ifiβα (9.27)

is the properly normalized collective mode wave function written in the flavor
basis, cf. (6.46). The first term in square brackets in (9.26) results from the
chain rule applied to the time derivative of U(x , t) and will emerge for any
local chiral Lagrangian. The second term is unexpected and reflects the non-
local structure of the Wess–Zumino term.

To eliminate double counting effects, we demand that the momenta con-
jugate to the collective coordinates do not contain any fluctuation parts:
Rα = −β2Ωα. The linear relation, (9.26), then translates into the primary
constraints

Ψα =
∫

d3r zαβ (x)
[
Π̃β(x) −

2√
3
λ(r)f8βγ η̃γ(x)

]
= 0 . (9.28)

The momenta Π̃β differ from those that are conjugate to η̃α exactly by the
collective part,

Πβ =
∂L

∂ ˙̃ηα
= Π̃β −

√
β2Ωβzαβ (x)f(r) , (9.29)

where f(r) is the metric function from (6.41). The induced secondary con-
straints require the fluctuations to be orthogonal to the collective mode

χα =
∫

d3r zαβ (x) f(r)η̃β(x) = 0 . (9.30)

These constraints are linear functionals of the fluctuations and their conjugate
momenta. They satisfy the Poisson brackets {Ψα, χβ} = δab so that Π̃α and
η̃β are conjugate to each other in the constrained subspace [52]. We then
construct the Hamiltonian by Legendre transforming, adding the constraints
with Lagrange multipliers αα and βα

H = −L+ Ωα
∂L

∂Ωα
+
∫

d3r
δL

δ ˙̃ηα(x)
˙̃ηα(x) + ααΨα + βαχα (9.31)

and expressing it as functions of the constrained fluctuations

H =
R2
α

2β2
+

1
2

∫
d3r

f(r)

[
Π̃α(x) +

2√
3
λ(r)f8αβ η̃β(x)

]2

+
Rα√
β2

∫
d3r zαβ (x)

[
Π̃α(x) +

2√
3
λ(r)f8αβ η̃β(x)

]

+
1
2

∫
d3r η̃α(x)h2

αβ(x) η̃β(x) + ααΨα + βαχα . (9.32)

From this Hamiltonian, we derive the canonical equations of motion and de-
termine the Lagrange multipliers from the requirement that the constraints
are fulfilled for all times, i.e., Ψ̇α = 0 and χ̇α = 0:
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αα = − Rα√
β2

− 4√
3

∫
d3r λ(r)zαβ (x)f8βγ η̃γ(x) and βα = − 2√

3
ω0 f8αβαβ ,

(9.33)
with ω0 given in (6.47). Terms that are linear in both, the collective and
fluctuating modes, emerge not only explicitly but also implicitly through
the Lagrange multipliers (9.33). We collect all these terms in the interaction
Hamiltonian,

Hint =
2Rα√
3β2

f8βγ

∫
d3r zαβ (x) [2λ(r) − ω0f(r)] η̃γ(x)

=
2

√
4πβ2

diαβ Rβ

∫
d3r z(r) [2λ(r) − ω0f(r)] x̂iη̃α(x, t) , (9.34)

where we substituted (6.46) and (9.27) and utilized identities for products
of SU(3) structure constants. This completes the derivation of the coupling
between the collective and fluctuating modes in the Skyrme model when flavor
symmetry breaking is omitted. The analogous derivation in the general case
is given in Appendix A of [47].

The second part of (9.34) reveals that only the P-wave channel of the
strange fluctuations is concerned. In the discussion of the equation of motion,
we therefore return to the single radial function η̃(r) defined in analogy to
(6.40). This radial function is subject to an inhomogeneous linear differential
equation. We first discuss the solution η to the homogeneous part of that
differential equation (still assuming flavor symmetry):

h2η(r) + ω [2λ(r) − ωf(r)] η(r)

= − [2λ(r) − (ω + ω0) f(r)] z(r)
∫ ∞

0

r′2dr′z(r′)2λ(r′)η(r′) . (9.35)

This equation differs from (6.41) only by the non-local term on the right-hand
side. It enforces the constraint, (9.30), as can easily be verified by multiplying
with z(r) and integrating over space (recall that h2z(r) = 0 and

∫
drr2z2λ =

ω0/2). The phase shift extracted from η is shown as the background phase shift
in Fig. 9.5. Obviously, it is repulsive such that the difference between the total
phase shift and this background phase shift shows a resonant behavior. This
behavior incipiently indicates that the pentaquark channel indeed resonates
in the large-NC limit.

For large NC, η̃ must carry the same phase shift as η . Hence, the effects of
Hint on η must be to reincorporate the resonance, at least for NC → ∞. We
will now demonstrate exactly that. Essentially, we have to integrate out the
collective modes in the sector relevant to kaon–nucleon scattering. For zero
total isospin and total spin 1

2 , only Λ and Θ+ couple as intermediate states.
Standard second-order perturbation theory yields

|〈Θ|Hint|(KN)I=0〉|2

ωΘ − ω
+

|〈Λ|Hint|(KN)I=0〉|2

ωΛ + ω
, (9.36)
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where ωΘ,Λ are the corresponding, NC-dependent, excitation energies ex-
tracted from the RRA Hamiltonian, (9.24) (in the flavor symmetric case they
are ωΘ = ω0 and ωΛ = 0). The signs in the propagators reflect the opposite
strangeness between Λ and Θ+. The kaon states in (9.36) refer to those in the
laboratory frame while η̃ rotates along with the soliton in the intrinsic frame.
The corresponding transformation, (F.3), brings an additionalD-function into
the game. At the end, the matrix element becomes

〈Θ|Hint|(KN)I=0〉 = XΘ

√
NC

4πβ2

k√
ω

∫ ∞

0

drr2z(r) [2λ(r) − ω0f(r)] η̃(r)

= XΘ

√
NC

4πβ2

k√
ω

∫ ∞

0

drr2z(r)2λ(r)η̃(r) , (9.37)

where the second relation recognizes the constraint (9.30). The collective co-
ordinate matrix element

XΘ :=
√

32
NC

〈Θ+|d3αβD+αRβ |n〉 (9.38)

is normalized such that limNC→∞XΘ = 1 in the flavor symmetric case. Since
the analogously defined XΛ vanishes under the same conditions, we will ignore
the Λ channel for the time being. Quantum mechanically we consider a state
that lies in the continuum. This is the structure of the Lee model [53, 54, 55]
and we readily find the width arising from coupling the state to the continuum
via Hint,

Γ(k) = 2π
ω

k
|〈Θ|Hint|(KN)I=0〉|2 = 2kω0X

2
Θ

∣∣
∣
∣

∫ ∞

0

r2dr z(r)2λ(r)η(r)
∣∣
∣
∣

2

.

(9.39)
Note the appearance of η rather than η̃ as in (9.37) because Hint is a pertur-
bation to the homogeneous problem that is solved by η.

Exactly the same width can be attributed to an additional separable po-
tential that is induced by the exchanged particles. In reaction theory, we get
the width function from the (real) reaction matrix R via

− k

∫ ∞

0

drr2
∫ ∞

0

dr′r′2R(ω; r, r′) = tan (δR(k)) =
Γ(ω)/2

ωΘ − ω + δE(ω)
, (9.40)

with the pole shift (ωq =
√
q2 +m2

K)

δE(ω) =
1

2πω
P
∫ ∞

0

qdq
[

Γ(ωq)
ω − ωq

+
Γ(−ωq)
ω + ωq

]
. (9.41)

Even though ωΘ = ω0 for the considered simplification, we distinguish them
in the energy denominators for later use. Formally, R obeys the Lippmann–
Schwinger equation (the “·” includes spatial integration)
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R = V + V ·G0 · R , (9.42)

where G0 the Green’s function for the constrained system,

G0(ω; r, r′) =
1
πω

P
∫ ∞

0

q2dq

[
ηωq

(r)ηωq
(r′)

ω − ωq
+
η−ωq

(r)η−ωq
(r′)

ω + ωq

]

. (9.43)

Here P denotes the principle value prescription. It is then straightforward to
verify that

V (ω; r, r′) = − ω0

ωΘ − ω
X2

Θ z(r) [2λ(r) − ω0f(r)] [2λ(r′) − ω0f(r′)] z(r′)

(9.44)
indeed reproduces the Lee model width function (9.39). Obviously, the po-
tential is nothing but the first term in (9.36). Numerical analysis indeed veri-
fies [47, 56] that the phase shift, (9.40) and (9.41), exactly matches the reso-
nance phase shift in Fig. 9.5, which was originally obtained as the difference
between the phase shifts of the BSA and the background phase shift from the
constrained fluctuations.

We add this non-local potential and the Λ analog to the Schrödinger equa-
tion for η and thus obtain the Schrödinger equation for η̃:

h2η̃(r) + ω [2λ(r) − ωf(r)] η̃(r) = −z(r)
[∫ ∞

0

r′2dr′z(r′)2λ(r′)η̃(r′)
]

(9.45)

×
[
2λ(r) − (ω + ω0) f(r) − ω0

(
X2

Θ

ωΘ − ω
+
X2

Λ

ω

)
(2λ(r) − ω0f(r))

]
.

The essential observation is that this equation has a simple solution as NC →
∞ (XΘ = 1 and XΛ = 0):

η̃(r) = η(r) − az(r) with a =
∫ ∞

0

drr2 z(r)f(r)η(r) . (9.46)

Here η(r) is the solution to the unconstrained equation (6.41) in the BSA.
The radial function, z(r), is localized in space. Thus, the phase shifts of η
and η̃, which are extracted from the respective asymptotic behaviors, are
identical. This explicitly verifies the earlier explained litmus test beyond the
above-mentioned numerical analysis.

We have established that (9.39) is the unambiguous width function of the
Θ+ pentaquark in the Skyrme model when symmetry breaking is set aside. It
dramatically differs from the one we discussed in Sect. 9.3 and what was his-
torically adopted. Most importantly, only a single collective coordinate matrix
element emerges. Hence, there cannot be any cancellation between several of
them, and we must conclude that such an explanation for a small pentaquark
width is invalid [57]. Yet even more than a year after this cancellation argu-
ment has been proven incorrect [47], it is still adopted [58, 59, 60].
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9.6 Skyrme Model Results for the Pentaquark Width

Though the discussion in the previous section was carried out along the
Skyrme model Lagrangian, the qualitative results generalize as they only ef-
fect the treatment of strangeness degrees of freedom. On the other hand, the
quantitative results may suffer considerable model dependences.

In Fig. 9.6, we show the resonance phase shift computed from (9.40) for
various values of NC. First we observe that the resonance position quickly
moves toward larger energies as NC decreases. This is mainly due to the strong
NC dependence of pole position ωΘ → E10−E8: in the flavor symmetric case,
it is twice as large for NC = 3 as it is when NC → ∞, cf. (9.23). The pole
shift δE is actually quite small (some 10 MeV) so that E10 − E8 is indeed
a reliable estimate of the resonance energy. Second, the resonance becomes
shaper as NC decreases. Mainly this is caused by the reduction of XΘ.

We now turn to more quantitative results for which we also include fla-
vor symmetry breaking effects. Two principle differences arise for the width
calculations. First, the interaction Hamiltonian acquires an additional term

Hsb
int =

(
m2
K −m2

π

)
diαβD8β

∫
d3r z(r)γ(r)η̃α(x, t)x̂i . (9.47)

This turns the width function to

Γ(ω) = 2kω0

∣
∣
∣
∣

∫ ∞

0

r2dr z(r)
[
2XΘλ(r) +

YΘ

ω0

(
m2
K −m2

π

)
]
ηω(r)

∣
∣
∣
∣

2

, (9.48)

whereXΘ and YΘ =
√

8NC/3〈Θ+|d3αβD+αD8β |n〉. Contributions of the form∫
drr2z(r)f(r)η(r) vanish due to the constraint in (9.30).

Second, XΛ does not vanish as NC → ∞ and the R-matrix formalism is
always two dimensional. Nevertheless, the large NC solution is always of the
form (9.46) and the BSA phase shift is recovered. For this to happen, the
matrix elements must satisfy
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Fig. 9.6. The resonance phase shift, (9.40), as a function of NC for mK = mπ (left
panel) and mK = 495 MeV (right panel)
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XΘ =
ωΘ

ω0
YΘ , XΛ = −ωΛ

ω0
YΛ , YΘ = YΛ =

√
ω0

ωΘ + ωΛ
, (9.49)

as NC → ∞. And indeed, the techniques of Sect. 9.4 reproduce these relations!
Besides sandwiching the collective coordinate matrix operators between the
eigenfunctions of (9.24), this also requires to substitute

ωΛ −→ EΛ − EN and ωΘ −→ EΘ − EN , (9.50)

on the right hand sides of (9.49), with EN,Θ,Λ being the eigenvalues of (9.24)
in the respective channels. In this case, we have actually introduced collective
coordinates for a non-zero mode. As in Sect. 8.5, this proves such techniques
appropriate beyond the parameterization of exact symmetries.

Having collected all these entries, the resonance phase shift is computed ac-
cording to (9.40), cf. Fig. 9.6. Again the resonance narrows as NC approaches
its physical value.

The width functions for Θ and its isovector partner Θ∗ are shown in Fig. 9.7
for NC = 3. The Θ∗ case merely requires the appropriate modification of the
matrix elements in (9.48). Most importantly, the k3 behavior of the width
function, as suggested by the treatment discussed in Sect. 9.3, is reproduced
only right above threshold, afterward it levels off. Second, and somewhat
surprising, the width of the non-ground state pentaquark is smaller than that
of the lowest lying pentaquark. The particular model suggests ΓΘ ≈ 40MeV
and ΓΘ∗ ≈ 20MeV.
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10

Multi-baryon Systems in the Skyrme Model

Here we will communicate some basic ideas for studying hadrons with higher
baryon numbers in soliton models. The main reason for not being able to
make concrete predictions in this regard is the fact that quantum corrections
affect configurations with different winding (or baryon) numbers differently
and significantly alter the binding energies. We have seen in Sect 8.6 that
these corrections are difficult (if at all) to handle, mainly because the effec-
tive meson models are non-renormalizable, at least in the sense that only a
finite number of counterterms is required. In Sect. 10.6 we will discuss an
illuminating example for how significant these corrections are in multi-baryon
systems.

Nevertheless there are interesting issues about B ≥ 2 configurations in
soliton models that are worth discussing. Likewise, it is interesting to apply
the concept of baryons being topological singularities in chiral models to heavy
ion collision issues.

10.1 Static Configurations with B ≥ 2

The identification of the baryon number with the winding number of a meson
configuration is central to the soliton picture, cf. (4.50). So far we have only
considered configurations with unit winding number. Of course, the soliton
description of baryons is not limited to that sector. As already indicated after
(4.51) the very first guess for a baryon number two object in the Skyrme
model is to require boundary conditions F (∞) = 0 and F (0) = 2π. In the
Skyrme model the classical mass (4.27) of the corresponding solutions to the
equation of motion (4.28) turns out to be about three times as large as that
of the B = 1 hedgehog. Hence this B = 2 configuration is classically unstable.
It achieves the twofold mapping by doubling the speed in the chiral angle.
Alternatively one might attempt to double the speed of the azimuthal angle
ϕ via the ansatz [1]

H. Weigel: Multi-baryon Systems in the Skyrme Model, Lect. Notes Phys. 743, 207–230 (2008)
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U(x) = exp [iτ · Π2(x)F2(r)] where Πn(x) =

⎛

⎝
sin(θ) cos(nϕ)
sin(θ) sin(nϕ)

cos(θ)

⎞

⎠ ,

(10.1)

with θ being the polar angle in coordinate space. Direct computation verifies
that this parameterization has winding number two (or more generally n)
since the baryon density is formally that of (4.51) with an extra factor n. The
classical mass is only slightly generalized when compared to (4.27)

Ecl[Fn] =
2πfπ
e

∫ ∞

0

dx

{

n2x2F ′2
n + (n2 + 1)sin2Fn + 2μ2

πx
2 (1 − cosFn)

+sin2Fn

[
(n2 + 1)F ′2

n +
n2sin2Fn

x2

]}

, (10.2)

where again x = efπr. Numerical minimization in the corresponding winding
number sectors yields Ecl[F2] = 2.14 Ecl[F1] [1]. Despite the sizable decrease
compared to the hedgehog with F (0) = 2π, this is still an unbound baryon
number two configuration. (The vector meson and chiral quark model analogs
have been considered in [2, 3], respectively.) In a next step one might take
into account that the ansatz has only axial rather than spherical symmetry.
This should be reflected by a deformation of the chiral angle,

Fn(x) = Fn

(√
x2 + y2 + λz2

)
. (10.3)

Here λ is a parameter that is varied to further reduce the classical energy.
While this is not sufficient to bind the corresponding B = 2 Skyrmion, it
accomplishes that goal when stabilization is accounted for by the sixth order
Lagrangian in (4.54) [4]. The configuration of (10.3) depends only on a single
variable. To properly reflect the axial symmetry, the radial and axial coordi-
nates should be treated differently. This affects both the chiral and the polar
angles [5],

Un(x) = exp [iτ ·Πn(x)Fn(ρ, z)] where Πn(x) =

⎛

⎝
sinαn(ρ, z) cos(nϕ)
sinαn(ρ, z) sin(nϕ)

cosαn(ρ, z)

⎞

⎠ .

(10.4)

Here cylindrical coordinates prove to be appropriate ρ =
√
x2 + y2. This

ansatz allows for more general deformations of the parameterization (10.1)
than does (10.3). These deformations should be continuous thereby implying
that Fn(ρ, z) is invariant while αn(ρ, z) → π−αn(ρ, z) under spatial reflection.
We introduce differential forms (f, f) = (∂ρf)2 +(∂zf)2 and [f, g] = ∂ρf∂zg−
∂ρg∂zf for a compact presentation of the classical energy functional
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Ecl[Un] = 2π
∫

dzρdρ

{
f2
π

2

[
(F, F ) +

(
(α, α) +

n2

ρ2
sin2α

)
sin2F

]
(10.5)

+
sin2F

2e2

[
[F, α]2 +

n2

ρ2
((F, F ) + (α, α)sin2F )

]
+m2

πf
2
π (1 − cosF )

}

in the Skyrme model. The variational problem is more complicated than
previously because coupled partial differential equations must be solved for
F = Fn(ρ, z) and α = αn(ρ, z). The numerical accuracy is usually checked
from the baryon number to be sufficiently close to the integer n [6]. For typical
Skyrme model parameters the n = 2 configuration is indeed classically bound
by some 10 MeV [5]. The contour lines of equal mass density (integrand in
(10.5)) are (approximately) circles centered at z = 0 and ρ = ρ0 > 0 rather
than the origin of the ρ–z plane. In three dimensions these configurations are
tori; for which reasons they are often called donuts.

In [5] the tori configurations were found to be bound not only in the case
of B = 2 but also for B = 3, 4, 5. As an aside, for B = 1 the hedgehog
solution was confirmed from this extended ansatz. In the baryon number 2
case, the donut structure of the lowest energy solution was also argued for
in [7] by comparison with scattering of Bogomolny–Prasad–Sommerfeld [8, 9]
monopoles. Finally the donut shape of the B = 2 minimal energy configura-
tion was confirmed with lattice calculations without reference to a variational
ansatz at approximately the same time [10, 11, 12].

Let us consider the B = 2 donut in more detail. We want to utilize
collective coordinates for its quantization and generate states with physical
quantum numbers. In particular it is challenging to identify light nuclei. The
symmetries that are (spontaneously) broken by the soliton configuration are
rotations in both coordinate and flavor space. In contrast to the hedgehog
configuration, (4.23), rotations in either space cannot be formulated mutually
and collective coordinates must be introduced separately,

U(x, t) = A(t)U2(ξ(t))A†(t) with ξi(t) = [D(t)]ij xj . (10.6)

That is, A(t) ∈ SU(2) (or SU(3)) parameterizes the unitary flavor transfor-
mations and D(t) ∈ SO(3) contains the collective coordinates for rotations
in coordinate space. In analogy to (5.16) and (5.6) we define intrinsic (or
body-fixed) angular velocities ωa and Ωn for A and D, respectively. A ro-
tation about the angle γ around the z-axis transforms the azimuthal angle
ϕ → ϕ + γ. On the other hand, a rotation around the third isospin axis in-
duces π1 → π1 cos γ + π2 sin γ and π2 → −π1 sin γ + π2 cos γ in the space of
the pion fields πi. For the ansatz (10.4) this implies that nϕ → nϕ − γ is a
symmetry. When quantizing the donut, the equivalence of these two transfor-
mation induces the constraint Jb.f.

3 + nIb.f.
3 = 0 for the projection quantum

numbers of spin and isospin in the intrinsic frames. In terms of the respective
sets of Euler angles the eigenfunctions are (setting n = 2)
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〈A,D|II3, JJ3, �〉 =
(2I + 1)(2J + 1)

8π2
DI
I3,�(A)DJ

J3,−2�(D) . (10.7)

The physical spin (isospin) emerges from the associated rotation of the intrin-
sic frame, Ji = DijJ

b.f.
j (Ii = 1

2 tr(τiAτjA†)Ib.f.
j ). The resulting spectrum is

E − Ecl =
I(I + 1)

2ΘI
+
J(J + 1)

2ΘJ
+
�2

2

(
1

Θ3
− 1

ΘI
− 4

ΘJ

)
, (10.8)

where the moments of inertia ΘI , ΘJ and Θ3 are functionals of the profiles F2

and α2. Immediately we question the physics interpretation of the intrinsic
quantum number �. The above-discussed symmetry properties of αn under
z → −z cause the first and second component of Π2 not to change sign
under spatial reflection while the third component does. From (4.33) we re-
call that the pseudoscalar nature gives rise to an additional overall sign for
Π2. Hence the parity operation on Π2 is equivalent to a rotation in isospace
A → A exp(iπτ3/2). This symmetry operation induces the phase eiπ� for the
wave function in (10.7). Hence � must be an integer and, due to the constraint
between Jb.f.

3 and Ib.f.
3 , spin and isospin must be integers too. This, of course,

is expected for a B = 2 configuration. The low-lying positive parity states
have � = 0 and thus the last term in (10.8) does not contribute. The poten-
tially lowest energy state with I = 0 and J = 0 can be built neither from six
quarks nor from two nucleons [1]. Rather this state should be interpreted as
a two boson composite. Its occurrence here results from the SU(2) quantiza-
tion which allows to assign integer spin to the B = 1 hedgehog. This state
does not emerge in the SU(3) quantization scheme [13].1 Model calculations
show that ΘJ < ΘI and thus the deuteron-like system (I = 0, J = 1) has
lower energy than the singlet scattering state (I = 1, J = 0); a remarkable
qualitative agreement with the existence of the deuteron and non-existence
of a dineutron-type state. Any negative parity state must have J ≥ 2 so that
the rotational energy unbinds them.

In [15] the energy functional was minimized for B ≤ 6 with lattice
techniques and the surfaces of equal mass density have been classified as
tetrahedrical and cubic for B = 3 and B = 4, respectively. Each of these
configurations can be constructed by joining several (deformed) torus-like
structures. In analogy to the above discussion, the B = 3 tetrahedra was quan-
tized in [16] and identified with 3He and 3H nuclei. We refrain from presenting
numerical results for the binding energies because of significant parameter de-
pendences as well as the unresolved issue of quantum corrections. However,
with the above-constructed B = 2 and B = 3 [16] wave functions it is pos-
sible to compute matrix elements of symmetry currents just alike described
in Chap. 7 for the B = 1 system. In Table 10.1 we compare predictions for
magnetic moments with empirical data for light nuclei. Given the addressed

1 Demanding the existence of a closed path to a configuration with two well-
separated B = 1 configurations of half-integer spin also excludes this state [14].
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Table 10.1. Magnetic moments for B = 2 and B = 3 states in the Skyrme model
with parameters from [17]. Table adopted from [6]

mag. mom. p n 2D 3He 3H

fπ = 54 MeV, e = 4.84 1.97 −1.24 0.74 −1.92 2.72
expt. 2.79 −1.91 0.86 −2.13 2.98

reservations, the agreement is astonishingly good. For axial properties the sit-
uation is similar to that of the nucleon: the predicted axial 3He–3H transition
matrix element is only about half as large as the experimental value (0.58 vs.
1.21) [16].

10.2 Product Ansatz

Even though we have investigated the construction of exact solutions with
B > 1 in the preceding section for the exploration of the multi-baryon system,
a different approach is more illuminating for the physics interpretation. For
this we particularly want to exploit the additive character of the baryon num-
ber and attempt to identify the quantum numbers of the individual baryons
that participate. Above we only considered the quantum numbers of the com-
posite configuration.

We compute the baryon number from the spatial integral over the time
component of the topological current, (4.50). In the notation of differential
forms (in three space dimensions) as in Appendix C the baryon number is

B[U ] =
∫

d3rB0 =
1

24π2

∫
tr [ααα] = − 1

24π2

∫
tr [βββ] , (10.9)

where again α = U †dU and β = UdU † = −UαU †. Here we want to examine
the baryon number for field configurations that are parameterized as a product
of two unitary matrices,

U(x, t) = U1(x, t)U2(x, t) . (10.10)

This implies α = U †
2α1U2 + α2 = U †

2 (α1 − β2)U2 where the subscripts are
attached according to (10.10). Hence the associated baryon number is

B[U1U2] =
1

24π2

∫
tr
[
α3

1 − β3
2 − 3β2α

2
1 + 3β2

2α1

]

=
1

24π2

∫
tr
[
α3

1 + α3
2 + 3β2(dα1) − 3(dβ2)α1

]
. (10.11)

Since the last two terms combine to a total derivative they may be dropped.
Thus the baryon number is additive for the product configuration, (10.10),
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B[U1U2] = B[U1] +B[U2] . (10.12)

Accordingly, in the soliton picture the superposition of two distinct baryons
is described by the product of the chiral fields for the individual soliton con-
figurations. This paves the way to consider a two-nucleon system

Ui(x, t) = Ai(t)U0(xi)A
†
i (t) for i = 1, 2 (10.13)

where U0(x) is the static configuration of (4.23) representing a single baryon.
The spatial separation of these hedgehogs is parameterized by xi = x ± R/2
and Ai(t) ∈ SU(Nf) contains the respective spin-flavor collective coordinates.
Though this is not a solution to the variational problem, it presumably does
so for configurations that have the baryon density peaked at well-separated
regions in space because then distortions of the hedgehog get suppressed.

10.3 Nucleon–Nucleon Potential

We now want to employ the just-constructed B = 2 configuration to exploit
the potential interaction between the two solitons centered at ±R/2. It is
obtained by subtracting the single Skyrmion energies from that of the product,
(10.10) [18]

V (R, A1, A2) = E[U1U2] − E[U1] − E[U2] . (10.14)

Let us first discuss the adiabatic behavior at large distances, |R| → ∞, the
region in which the product ansatz is assumed to resemble the B = 2 solution
reasonably well. Then the interaction approaches

V (R, A1, A2) −→ 4πA2f2
πDai(A1)Daj(A2)

∂

∂Ri

∂

∂Rj

e−mπ|R|

|R| , (10.15)

where the amplitude A is read off from (4.29). To sketch the derivation of
(10.15) we note that U1 ≈ 1 in the spatial regime where αμ2 �= 0 when |R|
is large; and vice versa. For large |R| only the leading derivative terms are
essential. Parameterizing U0(xi) = exp (iτ · πi/fπ) enables us to express the
leading contribution as

V (R, A1, A2) −→ −Dai(A1)Daj(A2)
∫

d3x
[
(∂2 +m2

π)π
(i)
1

]
π

(j)
2 (10.16)

after an integration by parts. The major contribution to the integral stems
from regions where it is save to adopt the asymptotic behavior (4.29) that
we write as πa = Afπ∂[e−mπra/ra]. This furthermore implies (∂2 +m2

π)π1 ≈
−4πAfπ∂[δ3(x1)]. We shift the integration variable x by R/2, write the gra-
dients as those for the external parameter R and move them out of the integral
to finally obtain the result of (10.15).
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Sandwiching V (R, A1, A2) between states that contain two uncorrelated
nucleons and evaluating the individual collective coordinate matrix elements
according to (5.44) yields

〈1, 2|V (R, A1, A2)|1, 2〉 −→ (10.17)

4π
(
Afπ
3

)2

〈1|τ (σ · ∂R) |1〉 · 〈2|τ (σ · ∂R) |2〉 e−mπ|R|

|R|

where in the standard notation τ and σ represent (twice) the nucleon isospin
and spin operators, respectively. The scalar product affects the ispspion op-
erators. Equation (10.17) assumes the established form of the one-pion ex-
change contribution to the nucleon–nucleon potential in the boson exchange
model [19, 20, 21] once the identification

A =
3
8π

gπNN
fπMN

(10.18)

is made. This is not surprising since the utilized large R approximations cor-
respond to the description of the pion field at R in the presence of a pointlike
nucleon source at the center.

Hence we find that to leading order of the large separation expansion
the Skyrmion–Skyrmion interaction can indeed be mapped onto the boson
exchange model and the coupling constant for the one-pion exchange can be
extracted from the Skyrmion. Even though this does not imply the mapping
of the Skyrme model onto a Yukawa model in general, substituting A in favor
of the axial charge via (5.59) indeed reproduces the Goldberger–Treimann
relation, (5.62), in the chiral limit.

Studies beyond the large separation expansion can only be performed nu-
merically and we will sketch the results which are mostly taken from [22, 23,
24, 25].

In the adiabatic approximation we ignore the time derivatives of the col-
lective coordinates Ai(t). Then only the relative orientation C = A†

1A2 of the
two hedgehogs is relevant. Writing C = c4 + iτ · c and ignoring the unitary
constraint C†C =

∑4
i=1 c

2
i = 1 for a moment, the SU(2) Skyrme model in-

teraction potential is a sum of terms that are quadratic and quartic in ci.
Even though αμ is already quadratic in ci and the Lagrangian contains terms
up to fourth order in αμ, the interaction only picks up terms of the structure
α1α2α1α2, i.e., an equal number of contributions from either hedgehog, and is
thus at most quartic in ci. From rotational and isospin invariance, the general
form of the quadratic term is

v2(R, C) = α1(R) c2 + α2(R) c24 + α3(R)
(
c · R̂

)2

, (10.19)

with R = |R|. The radial functions αi(R) are extracted from pertinent choices
of coordinates. For example, C = iτ1 and R = Rêz provides α1(R). For the
quartic pieces a similar but somewhat more complicated decomposition exists
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that defines six radial functions β1(R), . . . , β6(R) [22]. Once the nine radial
functions are (numerically) computed, the constraint C†C = 1 is reinforced
and two-nucleon matrix elements are computed by noting that [26]

Dj
mm′(A†

1A2) =
j∑

m′′=−j
Dj
mm′′(A†

1)D
j
m′′m′(A2) . (10.20)

Finally linear combinations of the αi and βi are mapped onto the radial func-
tions that are contained in the general decomposition of the nucleon–nucleon
potential [19]. This potential is parameterized by six linearly independent
operators in the product space of two nucleons,

V (R) = V +
C (R) + τ 1 · τ 2V

−
C (R) + σ1 · σ2

[
V +
SS(R) + τ 1 · τ 2V

−
SS(R)

]

+
[
3(σ1 · R̂)(σ2 · R̂) − σ1 · σ2

] [
V +
T (R) + τ 1 · τ 2V

−
T (R)

]
. (10.21)

Here τ i and σi are (twice) the isospin and spin operators for the two nucleons
i = 1, 2. An exemplary mapping is [22],

V −
T (R) =

α3(R) + β3(R)
54

+
β5(R)
432

+
β6(R)

72
. (10.22)

In the adiabatic approximation the three radial functions V −
C , V +

SS and V +
T

vanish identically. Results for the remaining three radial functions are depicted
in Fig. 10.1. From the large R regime we immediately observe that the one-
pion exchange contributions to V −

SS and V −
T and thus the Golberger–Treimann

relation are reproduced as discussed above, though the method is different this
time. In the intermediate range, 1 fm ≤ R ≤ 2 fm the predicted components
V −
SS and V −

T deviate from the one-pion exchange contribution by approxi-
mately the ρ-meson contribution within phenomenological potential models.
The ρ-meson is not explicitly incorporated in the model (only in the static ap-
proximation via the Skyrme term, cf. (4.64)). Hence the deficiency is expected
and cannot be viewed as a shortcoming of the model. On the other hand, the
central potential V +

C does not reflect the intermediate range attraction. This
raises some concern because this attraction is the major cause for nucleons
to bind to nuclei. However, this attraction originates from interactions with
scalar mesons in the meson exchange models for the potential [19, 20, 21].
These field degrees of freedom are not contained in the Skyrme model. In [27]
vector and scalar meson fields were explicitly considered in the context of
the nucleon–nucleon potential. That exhaustive study shows that indeed the
scalar mesons give rise to attractive forces in the intermediate range.

Attempts to compute the nucleon–nucleon interaction beyond the product
ansatz have also been made. Essentially the field equations must be numer-
ically solved in the winding number two sector. Simultaneously two distinct
baryons must be identified that are separated by a prescribed distance to ex-
tract the potential, (10.14). The main complication in these computations is
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Fig. 10.1. The nucleon–nucleon potential from the Skyrme model. The dashed
lines are comparisons to specific parts of the Paris nucleon–nucleon potential [19]:
ω-exchange for V +

C and one-pion exchange for both V −
SS and V −

T . Figure adopted
from [22]

the non-obvious projection onto physical two-nucleon states and the identi-
fication of the separation. To compute the nucleon matrix elements the rel-
ative isospin orientation C must be identified. To this end use is made of
the invariance under exchange of position and orientation of the two distinct
baryons [28, 29]. Let n be a unit vector perpendicular to the connecting line
between the location of the two baryons, e.g., the points with U = −1. The
exchange of position is a rotation by π around n. The single baryons are
hedgehogs (at least for large separation) so we must undo that rotation in
isospace. The remaining difference to the unrotated configuration defines the
relative isospin orientation, C. Stated otherwise, the configuration with two
distinct baryons has the symmetry

U(x, t) = C (n · τ )U(2n(n · x) − x, t) (n · τ )C† , (10.23)

provided C commutes with n · τ . This is indeed a symmetry of the product
ansatz and, since these rotations are global, it is also a symmetry of the ac-
tion. That is, in a relaxation scenario that is based on the field equations a
prescribed relative orientation C is always maintained. Similar to the analysis
of the product ansatz only a few choices for C are required to identify the
coefficient functions in the general decomposition of the nucleon–nucleon po-
tential, (10.21). So the initial configuration of the relaxation scenario is taken
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to be the product of two well-separated hedgehogs with prescribed (and con-
served) relative isospin orientation. Finally the separation must be fixed. This
can, e.g., be accomplished with the help of Lagrange multipliers [11]. This
augments the action by

L −→ L− λ

2
(R−R0)

2 (10.24)

with
R0 = 2

∫

z≥0

d3rB0(r)z (10.25)

when the initial configuration was separated along the z-axis. As expected,
these computations reproduce the radial functions of the product ansatz for
large separations, R � 2 fm. At smaller distances, this ansatz only reproduces
the repulsion for the orientations C = 1 and C = iτ3. In contrast, the exact
solution exhibits sizable attraction for C = iτ2. This not only provides the
intermediate range attraction for the central potential, VC(R), but also sig-
nificantly improves the agreement with the empirical meson exchange picture
for the nucleon–nucleon interaction, cf. Fig. 3 in [29].

As in the framework of the product ansatz, the radial functions V −
C , V +

SS

and V +
T vanish in the above-described exact calculation. They are induced

once mixing through intermediate states is incorporated. Essentially one aims
at the diagonalization of the two-baryon Schrödinger equation with the po-
tential V (R, A1, A2). Perturbatively the solution looks alike [30]2

VNN (R) = 〈NN |V (R, A1, A2)|NN〉

+
∑

s

〈NN |V (R, A1, A2)|s〉〈s|V (R, A1, A2)|NN〉
ENN (R) − Es(R)

, (10.26)

where the intermediate states are s = |NΔ〉, |ΔN〉, |ΔΔ〉 with total isospin
T , total spin J , orbital angular momentum L and spin projection S along R̂.
According to the Pauli principle the condition L + S + T = odd is enforced.
For R ≈ 1 fm the mixing amplitudes are about 10%. These corrections yield
additional attraction, in particular for the NN channel with J = L = S = 0
and thus further improve the agreement with empirical descriptions. The ad-
ditional attraction in the S-wave T = 0 channel is less pronounced [29].

These formidable efforts (especially numerically) show that the Skyrme
soliton model is capable to describe the physics of the two-nucleon system
reasonably well. In [31] these studies have been generalized to flavor SU(3)
with flavor symmetry breaking included.

2 For a given separation R the problem has actually been solved exactly; this
resembles a Born Oppenheimer treatment.
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10.4 Towards Dense Matter

Here we will discuss the application of the soliton picture for baryons to as-
pects of nuclear matter. As a first attempt it is plausible to study a Skyrmion
crystal on a lattice by imposing twisted boundary conditions [32] to minimize
the frustration energies from Skyrmions on neighboring cells. At low density
(small number of Skyrmion cells on the lattice) the Skyrmions are well sep-
arated while they grow with increasing density and melt into a high density
phase. The latter is characterized by approximately homogeneous energy and
baryon densities [33], so that the single Skyrmions lose their identities. There
is a couple of drawbacks besides being of intransparent numerical nature.
For example, the boundary conditions motivated in the low-density regime
are airily adopted for all densities. Also, the order of the phase transition was
found to be sensitive to the prescribed boundary conditions. While the twisted
boundary conditions suggest a first order transition, rectangular boundary
conditions indicate a second order transition [34].

Here we will therefore take a different path to investigate large densities
which is also interesting from the mathematics point of view. We consider
a single Skyrmion on compact manifolds, to be precise, on three spheres of
radius L: S3(L) [35, 36]. The density of this matter increases as L decreases. In
contrast to numerical studies of Skyrmion crystals on a lattice this treatment
provides information that is deduced analytically.

We embed S3(L) in R
4 by introducing a second polar angle 0 ≤ μ ≤ π,

such that x ∈ R
4 is parameterized as [37, 38, 39, 40]

efπx = L (cosμ, sinμ cos θ, sinμ sin θ cosφ, sinμ sin θ sinφ)
= L (cosμ, sinμ r̂) , (10.27)

where θ and φ can be thought of as ordinary polar and azimuthal angles.
Skyrme model parameters are used to turn L into a dimensionless quantity.
The (static) hedgehog ansatz for the chiral field reads

U(x) = 1 cosf(μ) + iτ · r̂ sinf(μ) . (10.28)

To fill the cell with one baryon the radial profile function f(μ) must obey
the boundary conditions f(0) = 0 and f(π) = π. The Skyrme model energy
functional (without pion mass term) for this manifold is straightforwardly
computed,

E[f ] =
fπ
2e

∫
dm

{
L
[
f ′2sin2μ+ 2sin2f

]
+

1
L

[
2f ′2sin2f +

sin4f

sin2μ

]}
,

(10.29)

where primes denote derivatives with respect to the argument and the in-
tegration measure is dm = sin θ dθ dφdμ. Variation yields the equation of
motion,
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[
sin2μ+

2
L2

sin2f

]
f ′′ = −sin 2μ− 1

L2
sin 2f f ′2 + sin 2f

[
1 +

1
L2

sin2f

sin2μ

]
.

(10.30)

Obviously the so-called identity map fI(μ) = μ always solves this equation and
also respects the boundary condition. The corresponding energy is evaluated
to be

E[fI] = 3
π2

e
fπ

(
L+

1
L

)
. (10.31)

It saturates the Bogomol’ny bound, (4.53), at its minimum, L = 1. Hence for
this radius the identity map is the true solution. For large L the hypersphere
turns into R

3 in which case the hedgehog is the known solution. Hence there
is an intermediate value L0 for which the identity map ceases to be a local
minimum. This value L0 can be determined from the variational problem that
introduces (static) fluctuations ψ about fI. The resulting change in energy can
be formally written as,

ΔE[fI] =
fπ
2e

∫
dmψ · V · ψ . (10.32)

The lowest eigenvalue λ0 of the differential operator V is known [36, 38],

λ0 = −L+
2
L
. (10.33)

Therefore fI is stable for L <
√

2 but unstable for L >
√

2. In the latter regime
the solution must be constructed by numerically integrating the differential
equation (10.30). This solution is localized like 1/L as the radius grows and
the corresponding energy saturates at the 73fπ/e, i.e., the classical energy of
a single Skyrmion for mπ = 0 [41], cf. Sect. 4.4. Hence the structure of the
solution changes at L =

√
2 and we observe a phase transition. This corre-

sponds to a critical density of about 0.25 fm−3 if efπ ≈ 0.5 GeV is assumed
(note that V (S3(1)) = 2π2), which is only little larger than nuclear matter
density, ≈ 0.17 fm−3.

We need to establish an order parameter that distinguishes between these
phases. A possible choice would be to use the different structures (fI vs.
localized Skyrmions) and consider deviations from the mean energy and/or
baryon densities because these deviations vanish only for the identity map.
However, this is a particular property for the baryon number one solution;
for configurations on S3 with larger baryon number these deviations do not
completely vanish in the high-density phase [37]. It is more appropriate to
write U = σ1 + iτ · π and consider the chiral average

Φ := 〈σ〉2 + 〈π〉2 , (10.34)

obtained by integrating the respective fields over S3. Since the hedgehog con-
figuration, (10.28), has π(r̂) = −π(−r̂) this average only affects the isoscalar
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field σ. Obviously 〈σ〉 vanishes for the identity map. For localized configura-
tion, U = 1 everywhere in space except around the center of the soliton. Hence
〈σ〉 approaches unity as L→ ∞. Numerical studies [38] show that Φ is a con-
tinuous but not smooth function of L, evidencing that the phase transition
is second order. In the high-density phase we have Φ = 0, i.e., chiral symme-
try is restored. This suggests to relate the observed phase transition to the
chiral phase transition, even though that is supposed to occur at significantly
higher densities. There are many ways to extend these studies, e.g., incorpo-
rate higher derivative terms in the chiral Lagrangian, adding vector mesons
or construct solitons on S3 with baryon number larger than one. These exten-
sion seem to increase the critical density somewhat but still it appears to be
too small [40]. All these extensions signal a second order phase transition.3

However, there is one exception. Consider the Skyrme model augmented by a
scalar (glueball) field to account for the QCD scale anomaly [42]

L = χ2Lnlσ + LSk +
χ2

0

2
(∂μχ)2 −B

[
1 + χ4

(
lnχ4 − 1

)]
, (10.35)

with Lnlσ and LSk defined in (4.22) and (4.26). Furthermore χ is the scalar
glueball field normalized to its vacuum expectation value χ0. The parameter
B determines the regime in which χ deviates from unity and forms a bag [43]
(a region in space with χ ≈ 0 for the R3 model). On S3(L) the equation of
motion for this scalar field reads

χ2
0

(
χ′′ + 2

cosμ
sinμ

χ′
)
− χf2

π

[
f ′2 + 2

sin2f

sin2μ

]
− 4BL2χ3 lnχ4 = 0 . (10.36)

This equation must be integrated in conjunction with (10.30) modified by
the appearance of χ in Lnlσ. In the localized Skyrmion phase the scalar field
obeys the boundary condition χ(π) = 1 since that point corresponds to spatial
infinity for R

3. For the identity map the expression square brackets is a non-
zero constant even at μ = π so that χ(π) < 1. Hence χ jumps at the phase
transition which therefore is first order in this model.

The Skyrmion on S3(L) not only is an interesting mathematical play
ground but also gives comprehensive insight in the way chiral symmetry can
be restored at high density. For various model Lagrangians this analytical
approach yields critical densities approximately equal to those from lattice
measurements [33, 34, 44]. Admittedly this critical density comes out in the
order of nuclear matter density, too low to be of physical significance. Even-
tually subleading 1/NC corrections may help to cure this shortcoming.

3 The pion mass term causes explicit chiral symmetry breaking and thus smoothes
the cusp at the phase transition.
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10.5 An Application to Heavy Ion Collisions

The chiral phase transition obviously challenges models in which the chiral
symmetry is spontaneously broken. Here we report on soliton model motivated
lattice measurements that explore the chiral phase transition and thus yield
information that are relevant for heavy ion collisions (HIC) [45, 46, 47, 48].
We will focus on the studies of [48] as an example for how the idea that
baryons emerge as topological objects in chirally symmetric Lagrangians (and
thus the soliton picture) is basic to these investigations. A scalar field must
be introduced to parameterize deviations from the chiral circle,

U(x) −→ φ4(x) + iτ · φ(x) (10.37)

without constraints for the isovector field Φ = (φ1, . . . , φ4). Initially the con-
figuration is chosen randomly. While it evolves in time it rapidly expands in
one (longitudinal) direction. This expansion is described by boosting to the
local co-moving frame, the Bjorken rod [49], characterized by the proper time
τ and the rapidity η,

t = τ cosh η and z = τ sinh η . (10.38)

The transverse coordinate (x in D = 2 + 1 dimensions) is unchanged. In the
D = 3+1 dimensional case the transverse components form a two dimensional
subspace. In this co-moving frame the kinetic energy from the non-linear σ
term, (2.40) acquires a factor of the proper time,

T =
τ

2

∫
dxdη (∂τΦ) · (∂τΦ) , (10.39)

in units of f2
π. The time evolution is governed by the equation of motion

1
τ
∂τΦ + ∂2

τΦ = ÔΦ , (10.40)

where Ô is a complicated linear operator that inter alia contains gradients
and Laplacians in x and η directions. The explicit expression for Ô is, of
course, model dependent. During the time evolution various observables are
monitored. In particular the modulus of the baryon density |ρ| and the related
numbers of baryonic structures (or defects) n(t) =

∫
dV |ρ|. This is not a

conserved quantity; neither need it be an integer.
To reduce the numerical complexity, most of the lattice measurements are

performed in D = 2 + 1 dimensions. Topologically non-trivial structures are
constructed from the compactified map R

2 → S2. This implies to consider
the chiral field in O(3), i.e., φ4 ≡ 0 but there is no constraint on φ. The
numerical study is defined through a rectangular lattice for x, η = (ia, jb):
Φ(τ, x, η) → Φij(τ) with Fourier transformation (in D = 3 + 1 dimensions i,
k and a have two components)
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Φij(τ) =
1

2N

N/2∑

k,l=−N/2+1

Φ̃kl(τ) exp
[
2π
N

(ik + jl)
]

+ h.c. . (10.41)

Chiral ensembles are constructed by taking the amplitudes Φ̃kl at the initial
time from a Gaußian deviate

Gkl =
1√

2πσkl
exp

(

−|Φ̃kl|2
2σ2

kl

)

(10.42)

where

σ2
kl =

σ2
0

Z
exp

(

−
√
p2 + q2 +m2

T

)

and
N/2∑

k,l=−N/2+1

σ2
kl = Nσ2

0 , (10.43)

with coordinates (p, q) = 2π(k, l)/(aN). The average occupation numbers
follow a Boltzmann distribution

nαkl = 〈〈|Φ̃αkl|2〉〉 = σ2
kl , (10.44)

for each component α. The above average is over the distribution (10.43).
This deviate obviously defines the (effective) temperature T . The range of
temperatures that can be realized in such lattice measurements is estimated
from the relation between temperatures and correlation lengths. The latter
are defined through normalized correlation functions4 (at a given time, τ)

C⊥
i =

1
Dσ2

0N
2

⎡

⎣
〈〈

∑

mn

Φmn ·Φm+i,n

〉〉

− 1
N2

〈〈
∑

mn

Φmn

〉〉2
⎤

⎦ .

(10.45)
The parallel correlation function affects the second index; C‖

i : Φm+i,n →
Φm,n+i. The angular averaged correlation may be defined via C̄(r): Φm+i,n →
Φm+i,n+j , while summing over all points (i, j) that are separated by r from
the lattice site (m,n). The correlation length Rα, is the distance at which Cαi
drops to 1/e:

Cαi0 =
1
e

=⇒ Rα = i0 ×
{
a for α =⊥
b for α =‖ .

(10.46)

The distribution, (10.42) and (10.43), is rotationally symmetric and thus
R = R⊥ = R‖. In that case the continuum limit of the correlation function
can be computed as Fourier transform of the average occupation numbers
σ2
kl → σ2(p, q), yielding R ≈ 1/T in the special case with m = 0 [48]. For
m �= 0 the decrease of R with T is modified to R ∝ T −κ and the lattice mea-
surements suggest κ slightly smaller than one. The lattice is defined by lattice
4 According to (10.44) each isovector component contributes σ2

0N
2. The normal-

ization 1/D arises as we consider O(D) models in the respective dimensions.
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unit size a and the number of sites N with total length � = Na for each di-
mension. The correlation should cover at least a single lattice unit but should
also fit well on the whole lattice. So the range of accessible temperatures is
estimated as 1

l � T � 1
a .

Once an initial high-density configuration is prepared, its time evolution is
determined by the evolution equation (10.40). The evolution is driven towards
chiral symmetry via a Mexican hat potential of the form

V (Φ, T ) =
λ

4
[
Φ2 − f2(T )

]2 −Hφ4 (10.47)

when
f2(T ) := f2

0 (T ) − H

λf0(T )
(10.48)

is negative. (The reduction to the O(3) model in D = 2+1 is obvious.) Generi-
cally f2

0 (T ) decreases monotonously from unity to zero when T increases from
zero to infinity. This implies that f2(T ) changes sign at, say T = TC . Thus
at high temperature the configuration that minimizes the potential vanishes
up to impurities from the explicit symmetry breaking that is measured by
H . The specific form of f2

0 (T ) is not crucial. A reasonable approximation is
to assume that it varies such that at τ = τ0 the sign of f2(T ) changes from
negative to positive, so that the minimizing field configuration changes from
Φ ∼ O(H) to Φ0 = (0, 0, 0, f0). This scenario is called the sudden quench
approximation.

After the sudden quench the structures interact with each other and in
particular nearby baryon and anti-baryon structures tend to annihilate. Thus,
with a short delay τ1, the average number of structures decays with a power
law n(τ) ∝ (τ/τ0)−γ . This is the so-called roll-down period which proceeds
until the system freezes out at τf when n(t) saturates at nf . The power is
parameterized as γ = αd where d = D−1 is the number of spatial dimensions.
The constant of proportionality is measured on the lattice as α ≈ 0.20 . . .0.25,
in agreement with statistical arguments [48].

The rapidity gradients decrease like 1/τ and it is thus legitimate to discard
them after the sudden quench. Contributions from higher derivative terms in
Ô are similarly suppressed. With these omissions the evolution equation

1
τ
∂τΦ + ∂2

τΦ− ∂2
xΦ−m2Φ = 0 (10.49)

describes the propagation of waves in transverse direction. This equation is
solved by simple Bessel functions

A(τ, x) ∼ eipx ×

⎧
⎪⎪⎨

⎪⎪⎩

J0

(
τ
√
p2 −m2

)
for p2 > m2

I0

(
τ
√
p2 −m2

)
for p2 < m2 .

(10.50)
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The mass parameter m2 = λf2, that characterizes the fluctuations about
Φ ∼ O(H), is negative before the sudden quench. After the sudden quench,
m2 is positive and a few modes with small p actually get amplified. Because
of this amplification the potential (and Skyrme) term becomes important for
the evolution and the roll-down commences and continues until the true vac-
uum Φ0 is reached. In the co-moving frame the averaged integrated potential
U =

∫
ddxV (Φ, T ) ((10.47) with Φ2 → 〈〈Φ2〉〉) increases linearly with τ

until 〈〈Φ2〉〉 starts to rise at τ1, the onset of the roll-down. The modified
behavior of 〈〈Φ2〉〉 is a consequence of amplified low momentum (p2 < m2)
transverse modes. Thus τ1 can roughly be estimated from (10.50). For exam-
ple, at τ1 ≈ 2.5/m the p = 0 mode is enhanced by about a factor e from
its value at τ0 if τ0m ≤ 1. During the roll-down period these modes receive
further amplification. For τ ≥ τ1 we may approximate I0(τm) ∝ eτm and
thus the end of the roll-down at τ = τf is obtained from the respective am-
plitudes, mτf ≈ mτ1 + ln

(
A(τf)
A(τ1)

)
. An amplification factor of about 10 then

suggests τf ≈ 4/m. These estimates for τ1 and τf are reproduced by the lattice
measurement within the O(3) model for D = 2 + 1 [48].

For large arguments, the Bessel functions decay like 1/
√
τ so that factors

τ as in the kinetic energy T , (10.39), are eventually compensated. Once the
dynamics is dominated by the transverse gradients the linear rise of T levels
off into a constant.

The average number of structures 〈〈n〉〉 is closely connected to the coher-
ence length R. On a d = D− 1 dimensional cubic lattice the field orientations
Φ are statistically independent on sublattices of size R. Since in total there
are (Na/R)d such sublattices, one estimates

〈〈n〉〉 = νd(Na/R)d , (10.51)

where νd is the average number of defects for a lattice cell. Essentially νd is
the winding density and has been determined for various manifolds [50, 51],5

e.g., ν2 = 1
4 and ν3 = 5

16 for the O(3) and O(4) models, respectively. The re-
lation (10.51) can be tested on the lattice by following the number of defects
and the correlation length as functions of the initial temperature T . Indeed
the 〈〈n〉〉 ∝ (Na/R)2 behavior is reproduced for d = 2, however, the constant
of proportionality is somewhat smaller (≈ 1/5) than the topology argument
suggests. During roll-down the average number of defects decreases power-
like from the initial value n0 at the time of the sudden quench. At freeze-out
time it smoothly approaches a constant value, nf that measures the number
of surviving baryons plus anti-baryons. Somewhat surprisingly the reduction
nf/n0 is numerically found to be only about 50%. At all times the propor-
tionality 〈〈n〉〉 ∝ (N/R̄)2 for the mean correlation length defined from C̄ is
approximately maintained.

5 The scenario behind this picture of defect formation is similar to structure for-
mation in cosmology [52].
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For meson production the interesting quantity is the average number of
pions (and sigmas) that are produced during roll-down and may be counted
after freeze-out. This number can be extracted from the spectral analysis of
the energy T . There are two contributions to T , (i) an average background T̄
that is stored in the baryons and anti-baryons, (ii) oscillations about T̄ that
arise from the meson fluctuations. The complex Fourier amplitudes

C(ω) =
∫ τb

τa

〈〈T (τ) − T̄ (τ)〉〉 eiωτ dτ (10.52)

cover a large time interval after the freeze-out: τf � τa � τb. Then
ε(ω) = |C(ω)| and n(ω) = ε(ω)/ω are the spectral energy and particle number
densities, respectively. The latter has the mode sum representation6

n(ω) =
∑

ij

n
(π)
ij δ

(
ω − 2ω(π)

ij

)
+
∑

ij

n
(σ)
ij δ

(
ω − 2ω(σ)

ij

)
(10.53)

where ω(π,σ)
ij =

√
m2
π,σ +

(
2π
aN i

)2 +
(

2π
bN j

)2 are the frequencies available on
the lattice. The respective masses are the curvatures for the small amplitude
fluctuations about Φ0: m2

π = H/f0 and m2
σ − m2

π = 2λf2
0 = 2m2. Numeri-

cally, the δ-function type peaks of n(ω) are reproduced and the corresponding
amplitudes level off exponentially with ω such that the σ fluctuations may be
ignored for the subsequent discussion of particle multiplicities.

For large proper times only those parts contribute to the energy that carry
the overall factor τ , alike T in (10.39). In contrast to T all other remaining
terms do not contain derivatives with respect to τ . Hence scaling arguments
show that the solutions to the equation of motion (10.40) store exactly half
of their energy in T . Numerically it is found that the saturation value of T
can be roughly estimated from the potential at τ1 ≈ 5/2m ≈ 5/

√
2mσ. Then

the energy stored in the fluctuations can be approximated as

2T ≈ f2
πτ1

λ

4
V = f2

π

5mσ

8
√

2
abN2 , (10.54)

where V refers to the lattice volume in rapidity and transverse directions;
contributions O(H) have been omitted. We divide by the lowest possible pion
energy, to obtain the number of emitted pions

nπ = f2
π

5
8
√

2
mσ

mπ
abN2 . (10.55)

The total baryon number B is conserved. Hence n(τf) equals half the number
of surviving (anti)baryons for configurations with B = 0. From the time de-
pendence of n(τ) and the statistical argument, (10.51), the ratio of produced
anti-baryons (B̄) to pions in D = 2 + 1 is then estimated as
6 The factors 2 in the δ-function arguments arise because T is quadratic in the

meson fields, cf. (10.39).
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nB̄
nπ

≈ 0.15
a

b

mπ

mσf2
π

(τ0mσ)2α

R2
0

, (10.56)

where R0 is the correlation length at τ0 and the numerical factor arises from
taking ν2 = 0.25. The result, (10.56), is not free of lattice parameters. How-
ever, the ratio a/b of spatial and rapidity lattice constants equals that of the
(initial) transverse and longitudinal coherence lengths and should thus be of
the order τ0. Rough estimates based on assuming τ0mσ ≈ 1 yield multiplicity
ratios of 5–10%.

For D = 3+1 the data for the multiplicities (6.5–8.5% [53]) can be utilized
to substantiate the above assumptions for R0 and τ0. The data are reproduced
for 0.2 fm ≤ τ0 ≤ 0.5 fm, 0.7 fm ≤ R0 ≤ 1.2 fm in connection with R0 ≈
(3τ0)3α+1 which essentially washes out the τ0 dependence of the multiplicity
ratio [48]. Together with the arguments about the initial coherence length
discussed after (10.46) this suggests a chiral phase transition temperature of
T ≈ 200 MeV.

This single example already shows that numerous interesting features of
heavy ion collisions can be explored in a framework that is based on the
concept that baryons emerge as topological defects of chiral fields.

10.6 The H-dibaryon

The H-dibaryon is a potential B = 2 state with strangeness S = −2. It was
first studied in the framework of the MIT-bag model [54] and later also in the
Skyrme model [55, 56]. We will particularly study this example to substantiate
that quantum corrections to the static soliton energy [57] are crucial when
determining the binding energy of configurations with baryon number larger
than one.

The H-dibaryon configuration refers to a specific SO(3) embedding in
SU(3). The corresponding SO(3) generators are

Λ1 = λ7 Λ2 = −λ5 Λ3 = λ2 , (10.57)

so that (Λ · v̂)ij = iεikjvk for an arbitrary vector v. The ansatz for the
H-dibaryon configuration reads [55, 58]

VH = 1 eiψ + iΛ · x̂ e−iψ/2 sinχ+ (Λ · x̂)2 [e−iψ/2cosχ− eiψ] , (10.58)

where ψ and χ are functions of the radial coordinate r = |x|. The baryon
number for this configuration is solely given by the boundary values of χ,

B[VH] =
2
π

[χ(0) − χ(∞)] . (10.59)

Insertion of (10.58) into the Skyrme model Lagrangian, (4.22) and (4.26),
yields the energy functional
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Ecl[VH] = 2π
fπ
e

∫ ∞

0

dx
{

3
4x

2ψ′2 + x2χ′2 + 4
[
1 − cosχcos

(
3
2ψ
)]

+ 1
4

(
1 − cosχ cos

(
3
2ψ
)) (

9ψ′2 + 4χ′2)+ 3 sinχ sin
(

3
2ψ
)
φ′χ′

+ 1
x2

[
3 sin2χ sin2

(
3
2ψ
)

+
(
1 − cosχ cos

(
3
2ψ
))2]}

, (10.60)

where, again, primes denote derivatives with respect to the dimensionless
variable x = efπr. The minimal value for this energy functional is found to be
140fπ/e which is about 4% less than twice the energy of the B = 1 hedgehog,
cf. discussion after (4.28). This suggests that VH is significantly bound. Further
numerical analysis [57] shows that Ecl[VH] is slightly larger than the actual
B = 2 (torus type) solution discussed in Sect. 10.1. When chiral symmetry
breaking (i.e., mπ) is included, the SO(3) configuration is even lighter than
the torus.

To make more definite statements on whether or not VH represents a sta-
ble particle we have to (i) project it on physical states by means of collective
coordinate quantization, (ii) incorporate flavor symmetry breaking and (iii) es-
timate quantum corrections to the energy. Actually items (i) and (ii) are even
simpler than in the case of the hedgehog. Any transformation Λ = exp(ia ·Λ)
on VH generated by the subgroup, (10.57), can be reexpressed as a coordinate
rotation,

ΛVH(x)Λ† = VH(Dx) , (10.61)

where D is a rotation matrix that depends on the constant transformation
parameters a. Hence any spatial integrals over those parts of the Lagrange
density that do not contain time derivatives are invariant under Λ. Further-
more under (10.61) the contribution from the Wess–Zumino term, (C.27),
gives

(A†Ȧ)Λ
∫

d3x εijk

(
α

(H)
i α

(H)
j α

(H)
k + VHα

(H)
i α

(H)
j α

(H)
k V †

H

)
Λ

= (A†Ȧ)
∫

d3x εijk

(
α

(H)
i α

(H)
j α

(H)
k + VHα

(H)
i α

(H)
j α

(H)
k V †

H

)
, (10.62)

where α
(H)
i = V †

H∂iVH. Since Λ is irreducible in SU(3), the integral must
be proportional to the unit matrix in flavor space and the flavor trace of
(10.62) vanishes. Consequently, there is no such constraint as for the right
hypercharge in the hedgehog quantization, (6.8).7 The same argument can
be applied to the flavor symmetry breaking terms in (6.22) (again, omitting
time derivatives) to observe that the λ8 terms do not contribute. Hence flavor
symmetry breaking merely adds a constant to the energy functional that is
independent of the collective coordinates, A. In analogy to the computation
in Sect. 6.3 the collective coordinate Hamiltonian is finally found to be

H = Ecl[VH] +
1

α2[VH]
J2 +

1
β2[VH]

C2(SU(3)) +
1
2
γ[VH] . (10.63)

7 There is a symmetry similar to (10.61) for the hedgehog. However, in that case
the transformation reduces with respect to isospin and hypercharge.
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The constants of proportionality are numerically computed for the configura-
tion that minimizes the classical energy,

α2[VH] ≈ 121
fπe3

, β2[VH] ≈ 183
fπe3

, γ[VH] ≈ 13.4
fπe3

(
m2

K −m2
π

)
. (10.64)

Since there is no constraint, the lowest energy state is the SU(3) singlet,
with mass MH = Ecl[VH] + 1

2γ[VH]. Since this state has zero hypercharge and
baryon number two, it must carry strangeness S = −2. Therefore this state
should decay into two Λ baryons, if at all unstable. The corresponding mass
difference is MH−2MΛ ∼ 1 GeV, when the physical value for fπ is substituted.
Of course, this is huge and mainly due to the large absolute value of MΛ. We
have previously argued that this absolute value cannot be trusted because it
contains big quantum corrections. We have studied such corrections for the
hedgehog in Sect. 8.6 and it is obviously necessary to at least estimate them
for VH, this is issue (iii).

In Sect. 8.6 we saw that the major contribution to the quantum correction
to the soliton energy (i.e., the Casimir or vacuum polarization energy ΔE)
originates from the zero modes. The numerical results available for ΔE[VH]
utilize that issue as only the zero-mode contribution is considered within a
specific formulation of the Casimir energy. In [59] this approximation has
been studied for the kink (cf. Sect. 4.3) and sine-Gordon soliton models for
which these quantum corrections are exactly known [60, 61]. It turned out
that in these models the zero-mode approximation underestimated the full
result by about 10–15%. Comparing the results of [59] for the Skyrme to the
more elaborate computations of [62], cf. Sect. 8.6, exhibits an underestima-
tion of about 20%. So the zero-mode approximation should be viewed as a
trustworthy bound for ΔE. This should be sufficient to address the question
of whether or not the soliton picture predicts a strongly bound dibaryon with
strangeness S = −2. For consistency this approximation is then applied to
estimate ΔE in both the B = 1 and B = 2 sectors. The zero-mode treatment
of [59] works reasonably well because this specific formulation favorably im-
poses the so-called no–tadpole renormalization scheme, that is standard for
the evaluation of ΔE [63]. We will explain that briefly. We write the equation
of motion for the fluctuations, (8.3), as

H2
Sη(x, ω) =

(
H2

0 + V
)
η(x, ω) = ω2η(x, ω) , (10.65)

whereH2
S is the Klein–Gordon Hamiltonian for fluctuations in the background

of the soliton and H2
0 is that for a free Klein–Gordon field. Hence V is the

potential induced by the soliton. The no-tadpole condition corresponds to
omitting the O(V ) contribution in the mode sum for the Casimir energy,
(8.54). Formally we write this operation as [64]
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Table 10.2. Masses of the J = 1
2

baryons and the SO(3) H-dibaryon in the Skyrme
model with e = 4.0 as listed in [57]. All data are in MeV

B = 1 2 × (B = 1) B = 2

Ecl 1756.5 3513.0 3375.4
ΔE −1234.8 −2496.6 −1642.1
Ecoll. 400.2 800.4 0.0
Etot 921.9 1843.8 1733.3

ΔE ∼ 1
2
tr
[
HS −H0 −

1
2
H−1

0 V

]
= −1

4
tr
[
H−1

0 (H0 −HS)2
]

∼ −1
4

∑

n,n′

∫
〈n|H−1

0 (H0 −HS)2 |n′〉〈n′|n〉 (10.66)

where |n〉 and |n′〉 label the eigenstates of H0 and HS, respectively. The zero-
mode approximation amounts to restricting the n′ sum (integral) accordingly,

ΔE ∼ −1
4

∑

n′

∫ ∞

0

k2dk
√
k2 +m2

π |〈k|zn′〉|2 . (10.67)

We have used that HSzn′ = 0 and that there are no discrete states in the
free Klein–Gordon spectrum. The zero-mode wave functions, zn′(x) are de-
termined by operating with the symmetry generators X̂n′ on the soliton con-
figurations,

z
(B=1)
n′ (x) ∝

[
X̂n′ , U0(x)

]
and z

(B=2)
n′ (x) ∝

[
X̂n′ , VH(x)

]
. (10.68)

In practical computations [57, 59, 65, 66] the square root of the metric, 8.3,
according to which the eigenstates of HS are normalized, is included to render
the matrix element in (10.67) independent of the parameterization for the
fluctuations, cf. footnote 1 in Chap. 8. These wave functions are localized in
space and their Fourier transforms 〈k|zn′〉 level off with increasing k = |k|.
Therefore the integral, (10.67) is finite and actually negative definite.

The calculations that compare the Casimir energies for the B = 1 hedge-
hog and the B = 2 dibaryon have been performed by Scholtz et al. [57]. Their
results are listed in Table 10.2. The Casimir energy of the single hedgehog
is only little smaller (in magnitude) than the Casimir energy of the SO(3)
dibaryon. We may easily understand this: The number of zero modes is de-
termined by the symmetries of the model but not by the configuration itself.
Thus it is not surprising that the Casimir energy is roughly independent of
the baryon number. As a result the dibaryon becomes unstable. Yet, this is
not the end of the story. As discussed, the lowest B = 2 state is a spin-flavor
singlet hence it does not acquire any rotational energy. However, the B = 1
states receive rotational energies upon collective coordinate quantization. In
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particular for three flavors (computed from (6.11) since the current discus-
sion omits flavor symmetry breaking) they substantially increase the baryon
mass. This ends up in a loosely bound H-dibaryon as seen in Table 10.2. This
does not seem a very robust statement in view of the many approximations
made. However, it occurs certain that the quantum corrections are important
and invalidate the prediction of a strongly bound dibaryon with strangeness
S = −2. This also questions that the classically stable objects constructed in
Sect. 10.1 realize as observable baryons.
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Epilogue

In this monograph, we have reviewed the concept of chiral soliton models for
baryons. In these models, the baryons emerge as (topological) defects of the
chiral field. The elementary starting point is a chiral Lagrangian that fully
contains the dynamics of the chiral field and/or other fields that parameterize
meson degrees of freedom. Once it is set, in the sense that all pieces in the chi-
ral Lagrangian are established, no further assumptions about the interaction
are required. In particular, no additional information must be supplemented
from outside, and any question on low-energy baryon properties or resonances
has, in principle, a definite answer within the model. Even though reaching
testable predictions may still involve complicated and lengthy computations
and eventually simplifying approximations in a number of cases, this feature of
straightforwardness nicely distinguishes the soliton picture from many other
baryon models. A particularly fascinating feature is the fact that the soli-
ton must indeed be quantized as a fermion. This result strictly emerged from
reproducing the symmetries of QCD in the effective model.

We have encountered many applications of the soliton description. Starting
from the baryon spectrum they reach from static baryon properties via nucleon
resonances and deep inelastic scattering to even heavy ion collisions. Though
we have only discussed some specific exemplary studies, which we will not
itemize here, the reader may have recognized and appreciated the vast range
of successful activities.

As physicists, we have the common interest of confronting theory with
experiment. We do not expect the soliton picture to produce highly accurate
results that survive comparison with data on the few percent level, or even
better. After all in reality, 1/NC, which is the rough expansion parameter
within the soliton picture, is not small. Yet we certainly gain reliable qualita-
tive insight into the physics of baryons. A particular example is the smallness
of the singlet axial current matrix element which is nicely explained in the
soliton picture of the nucleon. Simultaneously, we stress that this picture in
principle represents a parameter-free approach once the chiral Lagrangian is
set to correctly describe meson properties.
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232 Epilogue

In this monograph, we have discussed numerous successful applications of
the soliton picture for baryons. Nevertheless, challenging problems remain that
should be subjected to future investigations. Here is a short list containing
those that are of general interest:

• We have seen that the nucleon–nucleon potential allows us to extract the
pion–nucleon coupling gπNN for the boson exchange model stemming from
Yukawa interactions. On the other hand, the soliton predictions for meson
baryon scattering cannot be associated with simple Yukawa interactions.
So, why can we map one sector of the model on the Yukawa theory but
not the other?

• Certainly, we want to improve our understanding of quantum corrections
to baryon properties, in particular the spectrum. After all, they contribute
already at the next to leading order in the 1/NC expansion. This is also
desirable to obtain reliable information about multi-baryon systems and
eventually nuclei. In particular, it concerns their binding energies.

• We have discussed the computation of nucleon structure functions in the
NJL chiral quark model. In that model, the Callan–Gross relation resulted
naturally. This relation reflects the fermionic nature of the nucleon. After
the gradient expansion, this information is contained in the Wess–Zumino
term. Hence, it should also be possible to extract this relation from there.

Additionally, it is very likely that in future the soliton picture will find further
specific applications so that the soliton picture prospectively promises to fur-
ther enrich our understanding of the structure of baryons and their dynamics
in the low and intermediate energy regimes.

In conclusion, the author hopes that the presented material not only com-
prehensively explains the soliton picture for baryons and leads to further in-
sight but also initiates further progress on the subject.



Appendix A

Chiral Properties of Quark Bilinears

In this appendix we briefly summarize the behavior of quark bilinears under
infinitesimal flavor and chiral transformations. These results can be em-
ployed to verify the invariance of the Lagrangian, (2.8), under these trans-
formations.

Under flavor rotations the quark spinors as defined in (2.4) transform as

q → q′ = e(i/2)εaλa q , q̄ → q̄′ = q̄ e−(i/2)εaλa , (A.1)

where q̄ = q†γ0 and εa with a = 0, . . . , Nf being the (infinitesimal) parameters
that characterize the transformation. The Gell–Mann matrices λa are defined
in Chap. 2. The sum a = 1, . . . , Nf is implied in the notation of (A.1). Chiral
rotations involve γ5 in addition,

q → q′ = e(i/2)ηaλaγ5 q , q̄ → q̄′ = q̄ e(i/2)ηaλaγ5 , (A.2)

with some different (infinitesimal) parameters ηa. The difference in the signs
of the exponentials multiplying q̄ in (A.1) and (A.2) arise from the anti-
commutator γ0γ5 + γ5γ0 = 0. Note that under this transformation the
chirality of a spinor is conserved, i.e., the properties (1 ± γ5) q = 0 are
not affected. Transformations that act on purely left- and right-handed
spinors as defined in (2.1) are characterized by εa = ηa and εa = −ηa,
respectively.

To summarize the transformation properties of quark bilinears under in-
finitesimal flavor and chiral rotations we first define the symmetric (dabc)
and anti-symmetric (fabc) structure constants of the generators introduced in
Chap. 2:

λaλb =
2
Nf
δab + dabcλc + ifabcλc . (A.3)

This also includes the unit matrix in form of λ0 =
√

2/Nf 1. Though this is
a notational convenience it brings into the game the complication that those
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234 Appendix A: Chiral Properties of Quark Bilinears

components of dabc with one or more of the subscripts being zero are not
totally symmetric; using i, j = 1, . . . , N2

f − 1 we rather have

d000 = d00i = d0i0 = 0 d0ij = di0j =
√

2
Nf

δij but dij0 = 0 . (A.4)

In case none of the indices is zero, the dabc are the well-known totally symmet-
ric structure constants of SU(Nf). The transformation properties are finally
listed in Table A.1. Actually some of the flavor singlet (a = 0) bilinears are
invariant since f0bc = 0. With these transformation properties at hand it is
straightforward to confirm that the combinations in (2.8) are indeed invari-
ant under flavor and chiral rotations. As an example we consider the chiral
transformation for the term multiplying G1:

Δ
N2

f −1∑

a=0

(
(q̄λaq)2 − (q̄λaγ5q)2

)
=

4i
Nf

N2
f −1∑

i=1

ηi [q̄λiq q̄γ5q − q̄λiγ5q q̄q]

+ 2 i
N2

f −1∑

a,b=0
i=1

daibηi [q̄λaq q̄λbγ5q − q̄λaγ5q q̄λbq] . (A.5)

Näıvely the symmetry of dabc suggests the last term to vanish. As already
mentioned in (A.4), the symmetry does not hold in case one or more indices
are zero and we have to discuss the case a = 0 separately,

Δ
N2

f −1∑

a=0

(
(q̄λaq)2 − (q̄λaγ5q)2

)
=

4i
Nf

N2
f −1∑

i=1

ηi [q̄λiq q̄γ5q − q̄λiγ5q q̄q]

+ 2 i
√

2
Nf

N2
f −1∑

b=0
i=1

d0ibηi [q̄q q̄λbγ5q − q̄γ5q q̄λbq] . (A.6)

Table A.1. Infinitesimal variations of selected quark bilinears under flavor and
chiral rotations. According to the summation convention in (A.1) and (A.2) we have
ε0 = η0 = 0. In [1] a list may be found that does not utilize this condensed form
including the a = 0 components

quark
bilinear

flavor rot.
(A.1)

chiral rot.
(A.2)

Δq̄λaq −fabcεbq̄λcq i q̄γ5

(
2

Nf
ηa + dabcηbλc

)
q

Δq̄γ5λaq −fabcεbq̄γ5λcq i q̄
(

2
Nf
ηb + dabcηbλc

)
q

Δq̄γµλaq −fabcεbq̄γµλcq −fabcηbq̄γµγ5λcq

Δq̄γµγ5λaq −fabcεbq̄γµγ5λcq −fabcηbq̄γµλcq
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Inserting (A.4) for d0ib finally shows that the right hand side vanishes. That
is, the considered combination of quark bilinears is indeed invariant under
chiral rotations.

Reference
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Appendix B

Functional Techniques

In field theory, we often encounter quadratic actions (cf. Chaps. 2 and 3)

S[φ] =
∫

d4xφ(x)Ôφ(x) (B.1)

for some linear operator Ô in path integrals alike (2.11),

Z =
∫

[Dφ] e−iS[φ] . (B.2)

Formally, we expand φ in terms of eigenfunctions of Ô,

φ(x) =
∑

n

anφn(x) with Ôφn(x) = λnφn(x) . (B.3)

Orthogonality of the φn and Gaußian integration for an yield

Z ∝
[ ∞∏

n=1

∫ ∞

−∞
dan

]

exp

[

−i
∫

d4x
∞∑

k=1

∞∑

k′=1

akφl(x)ak′λk′φk′(x)

]

∝
∞∏

n=1

1√
λn

= N
[
Det(Ô)

]− 1
2
. (B.4)

The normalization constant N is irrelevant to the logarithm

ln
(
Z

N

)
= ln

[
Det(Ô)

]− 1
2

= −1
2

Tr ln
[
Ô
]
. (B.5)

Commonly Ô = Ô0+Ôint where the second term contains the dynamics. Then
the formal expansion

ln
[
Ô
]

= ln
[
Ô0

]
+ ln

[
1 + Ô−1

0 Ôint

]

= ln
[
Ô0

]
+ Ô−1

0 Ôint −
1
2
Ô−1

0 ÔintÔ
−1
0 Ôint + · · · (B.6)

defines the Feynman series. So far φ has been a real boson field. For complex
boson fields, the integration space is twice as large, hence the factor 1

2 on the
right hand side of (B.5) is dropped in that case.
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In case of fermions, the an are anti-commuting Grassman variables,

anam = −aman , (B.7)

which implies a2
n = 0. The basic integration rules
∫

dan = 0 and
∫

danam = δnm (B.8)

follow from translational invariance of the measure. The eventual normaliza-
tion on the right hand is set to unity. To evaluate the path integral

Z[M ] =

[ ∞∏

n=1

∫
dān

][ ∞∏

m=1

∫
dam

]

exp [ā ·M · a] (B.9)

for the c-number valued matrix M , we expand the exponential function. The
rules in (B.7) and (B.8) enforce that any matrix element Mnm appears exactly
once. In addition the result must be totally anti-symmetric. Therefore,

Z[M ] ∝ Det(M) = exp {Tr [ln(M)]} , (B.10)

which can easily be verified for a low-dimensional matrix M . In field theory,
the above result turns into expressions alike (2.14).

The basic identification for the computation of the above-encountered
functional traces is

Tr{. . .} −→ tr
∫

¯d4x 〈x|{. . .}|x〉 . (B.11)

Here “tr” involves discrete indices only and |x〉 is an eigenstate of the position
operator, i.e., x̂|x〉 = x|x〉. In this space, the unit operator reads

1 =
∫

d4x |x〉〈x| =
∫

d4k

(2π)4
|k〉〈k| , (B.12)

with |k〉 being momentum state conjugate to |x〉: 〈k|x〉 = eik·x. Matrix ele-
ments of local functions are diagonal:

〈x|φ(x̂)|y〉 = φ(x)δ4(x− y) . (B.13)

In this functional language, the Fourier transform of a field has the compact
notation

φ̃(q − k) =
∫

d4x ei(q−k)φ(x) = 〈q|φ(x̂)|k〉, (B.14)

with |k〉 and |q〉 eigenstates of the momentum operator. Then the gap equation
that has been introduced in Chap. 2 is computed via
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δ
δMij(y)

Tr log (i∂/−M) = NCtrD〈y| (i∂/−M)−1
ij |y〉

= 4NC

∫
d4k

(2π)4
(
k2 −MM †)−1

ij
. (B.15)

Note that right hand side of the first equation defines the quark condensate,
〈q̄(x)q(x)〉. The trace in that equation only concerns the Dirac indices of the
γ-matrices. For the regularized action, (2.17), one finds under the assumption
that the solution to the gap equation is diagonal in flavor space

4NCδij

∫
d4k

(2π)4

∫ ∞

1/Λ2
ds e−s(k

2+m2
i ) =

NCδij
π2

∫ ∞

1/Λ2

ds
s2

e−sm
2
i , (B.16)

since after Wick rotation the momentum integral is merely Gaußian. The
result, (2.18), can be readily obtained from the definition of the incomplete
Γ-function

Γ(u, x) =

∞∫

x

dττu−1e−τ , (B.17)
especially

Γ(0, x) = − logx+ γ + O(x) for x→ 0+ (γ = 0.57721 · · · ) (B.18)

motivates the regularization prescription (2.17). Other Γ-functions are ob-
tained from the recursion relation

Γ(a+ 1, x) = aΓ(a, x) + xae−x . (B.19)

In Chap. 3, Γ-functions with half-integer index occur. The above recursion
relates them to the complementary error function

Γ(1
2 , x

2) =
√
π erfc(|x|) . (B.20)

Next we expand the regularized real part of the Euclidean action up to
quadratic order in the pseudoscalar meson fields φa, cf. (2.20), starting from

D/†ED/E = A0 +A1 +A2 + · · · . (B.21)

The subscripts indicate the order at which φa appears. Explicitly we have

A0 = ∂2 +m2 , A1 = mγ5

[

∂/
∑

a

φaλa

]

and A2 = 0 , (B.22)

wherem is the constituent quark mass, recall that flavor symmetry is assumed.
Obviously, only derivatives of φ occur. This is a consequence of the chiral
invariance of DetD/†ED/E. The formal series
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AF = −1
2

∫ ∞

1/Λ2

ds
s

Tr exp
(
−sD/†ED/E

)

= −1
2

∫ ∞

1/Λ2

ds
s

Tr e−sA0 +
1
2

∫ ∞

1/Λ2
ds
∫ 1

0

dζ Tr e−sζA0A2e−s(1−ζ)A0

−1
2

∫ ∞

1/Λ2
dss

∫ 1

0

dζ
∫ 1−ζ

0

dηTr e−sηA0A1e−s(1−ζ−η)A0A1e−sζA0

+O(φ3
a) (B.23)

allows us to systematically expand AF. It is convenient to evaluate the func-
tional trace in (Euclidian) momentum space since 〈k|A0|q〉 = (−k2 + m2)
δ(k − q). The matrix elements of the operators in A1,2 that are local in coor-
dinate space may be expressed in terms of the corresponding Fourier trans-
formation (B.14). Due to the cyclic property of the trace, only the linear
combination α = ζ + η ∈ [0, 1] occurs in the exponential functions and we
may straightforwardly integrate over β = ζ − η ∈ [−α, α]. The α-integral is
simplified by the symmetry α↔ 1 − α,

A(2)
F = −m

2NC

4

∫ ∞

1/Λ2
dss

∫ 1

0

dα
∫

d4q

(2π)4

∫
d4k

(2π)4
trDF (B.24)

×e−sα(k2+m2)γ5q/ φ̃a(q)λae−s(1−α)((k−q)2+m2)γ5(−q/)φ̃b(−q)λb .

After the shift k → k − (1 − α)q that integral is computed as in (B.16) and
the s-integral is expressed as an incomplete Γ-function. Final evaluation of
the Dirac and flavor traces yields (2.21) and (2.22).

Let us round off this appendix by an outline for the computation of
the pion matrix element of the axial current 〈0|q̄(x)γμγ5

τa

2 q(x)|πb(q)〉 =
ifπ(q2)qμδab e−iqx. Here a, b = 1, 2, 3 refers to the isovector components of
φ. This matrix element defines the pion decay constant, fπ, cf. Sect. 2.5. First
we note that we formally get the expectation value of the axial current for
prescribed meson fields (φa, etc.) from a functional derivative of the extended
action

〈q̄(x)γμγ5
τa

2
q(x)〉 =

δ
δaa,μ(x)

TrΛ log
[
iD/+ aν(x̂) · τ

2
γνγ5

] ∣∣
∣
aμ=0

, (B.25)

where the need for regularization is indicated. This equation just tells us to
expand the full action to linear order in the external source aμ(x) which can
easily be accomplished by adding aμ(x)γμγ5

τ
2 to the operator A1 in (B.22).

For the one-pion matrix element, it suffices to expand up to linear order in
the pseudoscalar fields. Then the relevant part of the action will be similar
to (B.24), with one of the qν φ̃aλa replaced by ãν(q) · τ

2 . The remainder of the
calculation proceeds as for (B.24). In the final matrix element with the pion
state, the q-integral disappears. Finally δ

δaa,μ(x) ãb,ν(q) = gμνδab eiqx renders
the functional form of the above definition. Note that the pion and φ fields
are differently normalized, π = fπφ, since the propagator of a field operator
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associated with a one-particle state has unit residue. This similarity between
the expansion of the action up to quadratic order in φa and the computation
of the axial current matrix element clearly shows that (2.23) equals the pion
decay constant (squared).



Appendix C

Baryon Current and Wess–Zumino Term

Here we will review the calculations showing that the topological current arises
from the gradient expansion of the expectation value of a baryon source and
as a symmetry current from the Wess–Zumino term. Furthermore we gauge
the Wess–Zumino by photon fields and discuss the relevance for the decay
of π0.

C.1 Gradient Expansion of the Fermion Determinant
with a Baryon Source

It is well known that the topological current arises as the leading term in the
gradient expansion of the corresponding one-quark-loop expectation value [1].
Nevertheless we repeat the essential points of that calculation because this
relation is essential for many of the arguments in the main text. In doing
so, we apply the functional techniques of Appendix A to the approach of [2].
Essentially we only consider the coupling of the quarks to the chiral field U
as in (2.20),

M(x) = mU(x) = g [σ(x) + iτ · π(x)] with σ2(x) + π2(x) = f2
π . (C.1)

We explicitly use neither the limitation to two flavors nor the unitary con-
dition for σ and π. However, we omit flavor symmetry breaking effects. We
have defined the coupling constant g = m/fπ because it is customary to pa-
rameterize the vacuum expectation value 〈σ〉 = fπ in the linear sigma model.
For simplification we furthermore introduce

M5(x) = g [σ(x) + iγ5τ · π(x)] . (C.2)

The expectation value of the baryon current solely concerns the fermion part
of the generating functional, (2.14) and may be formally written as
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〈Bμ(y)〉 =
1
N

∫
[Dψ]

[
Dψ̄
]
ψ̄(y)γμ

1
NC

ψ(y)

× exp
[
i
∫

d4x ψ̄(x) (i∂/−M5(x))ψ(x)
]

=
i
NC

δ
δsμ(y)

ln Det [i∂/−M5 − s/]sμ=0 (C.3)

since each quark carries baryon number 1/NC. In the first equation the normal-
ization factor N is merely the functional integral without the baryon current.
In the second part it is taken care of by the logarithmic derivative. The expec-
tation value on the left hand side is with respect to a prescribed configuration
M(x). The interaction via M5 does not affect color degrees of freedom, hence
that part of the determinant can be trivially computed and we write

〈Bμ(y)〉 = −iTr′
[
(i∂/−M5)

−1 γμδ(4)(x̂− y)
]
, (C.4)

where Tr′ denotes space–time integration (eventually in momentum space)
and the sum over Dirac and flavor indices; the color trace, however, has already
been performed. In (C.4) the hat (̂ ) indicates the position operator as defined
after (B.11). It should not be confused with the symbol for a unit vector. To
set up the gradient expansion we expand

M5(x) = M
(0)
5 + δM5(x) , (C.5)

where the first term on the right hand side has the properties

M
(0)
5 = const and M

(0)
5

[
M

(0)
5

]†
= m2 . (C.6)

Note that the latter condition does not imply the chiral circle condition which
would have to be imposed on the total field M5(x). The idea is to expand (C.4)
in powers of δM5(x). Due to chiral symmetry, the result will be a function of
only M (0)

5 and derivatives of δM5(x). At the end we replace

M
(0)
5 −→M5(x) and ∂μδM5(x) −→ ∂μM5(x) , (C.7)

to obtain the gradient expansion approximation. Rather than going through
the full calculation it is considerably simplifying to have an educated guess
for the result. We know that the baryon current has the quantum numbers of
the scalar–isoscalar ω meson which couples to three pions but neither to two
pions nor to σπ due to isospin and G-parity invariance. Defining φa = (π, σ)a
we therefore expect

〈Bμ(y)〉 = S(φ2
0) εabcdεμνρσ φ

(0)
a ∂ν [δφb] ∂ρ [δφc] ∂σ [δφd] + · · · , (C.8)

where φ(0)
a and δφa are obtained from M

(0)
5 and δM5(x), respectively and φ2

0 =
∑4

a=1 φ
(0)
a φ

(0)
a . Obviously the above formulation is consistent with the bosonic
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character of the (pseudo)scalar mesons. The main task now is to compute
the coefficient function S(φ2

0). Evidently the educated guess, (C.8) can only
emerge from the contribution that is of third order in δM5 in (C.3). Writing

(i∂/−M5)
−1 = [1 − (i∂/ −M

(0)
5 )−1δM5]−1(i∂/−M

(0)
5 )−1 (C.9)

the expansion of the factor in square brackets yields the unique third order
contribution

〈Bμ(y)〉 = −iTr′{(i∂/−M
(0)
5 )−1δM5(i∂/−M

(0)
5 )−1δM5 (C.10)

×(i∂/−M
(0)
5 )−1δM5(i∂/ −M

(0)
5 )−1 γμδ(4)(x̂ − y)} + · · · .

Without loss of generality we may chose the chiral basis such that M (0)
5 =

m1 = gfπ1 and δM5 = igτ · πγ5 = igΠγ5. In the last term we have defined a
matrix in flavor space. The choice of this basis is helpful to sum over the Dirac
indices because then the right hand side of (C.11) contains three factors of
γ5. To get εμνρσ we need to pick up four γ-matrices in (C.11), three of which
must emerge from the propagators. As there are four propagators, one of them
must deliver M (0)

5 and there are four possible combinations to do so. This is
most compactly presented in momentum space,

〈Bμ(y)〉 = 4img3εμνρσ

∫
d4q1
(2π)4

1
q21 −m2

. . .

∫
d4q4
(2π)4

1
q24 −m2

×{qν2 q
ρ
3q
σ
4 − qν1q

ρ
3q
σ
4 + qν1q

ρ
2q
σ
4 − qν1q

ρ
2q
σ
3 } ei(q4−q1)y

× trF
[
Π̃(q1 − q2)Π̃(q2 − q3)Π̃(q3 − q4)

]
+ · · · . (C.11)

The omitted lower index in any of the products of momenta within the
curly brackets indicates the propagator that delivered M

(0)
5 and the alter-

nating signs originate from various anti-commutators of γ5 and q/i. Fur-
thermore Π̃ denotes the Fourier transformation of Π according to (B.14).
Using

εμνρσ {qν2q
ρ
3q
σ
4 − qν1q

ρ
3q
σ
4 + qν1q

ρ
2q
σ
4 − qν1q

ρ
2q
σ
3 }

= εμνρσ (q2 − q1)
ν (q3 − q2)

ρ (q4 − q3)
σ (C.12)

we observe that the momentum factors coincide with the arguments of the
Fourier transforms. That is, we may, e.g., write

(q2 − q1)
ν Π̃(q1 − q2) = −i[̃∂νΠ](q1 − q2) .

After appropriate redefinition of the momenta this yields

〈Bμ(y)〉 = 4mg3εμνρσ

∫
d4r

(2π)4
d4s

(2π)4
d4t

(2π)4
e−i(r+s+t)y

∫
d4l

(2π)4
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× trF [̃∂νΠ](r) [̃∂ρΠ](s) [̃∂σΠ](t)
[l2 −m2] [(l − r)2 −m2] [(l − r − s)2 −m2] [(l − r − s− t)2 −m2]

+ . . . . (C.13)

The gradient expansion is a power series in the external momenta r, s and t;
these momenta are assumed small compared to m. In leading order we omit
them in the denominator and replace

∫
d4l

(2π)4
1

{. . .}
gradient

�expansion

∫
d4l

(2π)4
1

(l2 −m2)4
=

i
96π2m4

(C.14)

where the imaginary unit stems from the Wick rotation. Without the com-
plicated dependences on the external momenta, the Fourier transformations
can easily be undone, they just yield the coordinate space analogs. Collect-
ing pieces, we find the leading order (l.o.) gradient expansion to the baryon
current,

〈Bμ(y)〉l.o. =
ig3

24π2m3
εμνρσ trF [∂νΠ] (y) [∂ρΠ] (y) [∂σΠ] (y) . (C.15)

This exactly is the Goldstone–Wilczek current [1]. Finally we want to express
this result in a chiral invariant fashion in terms of U . We note that a chiral
invariant quantity must contain as many Us as U †s and that

mU †∂μU = mαμ = gi∂μΠ + . . . , (C.16)

with αμ defined after (2.40). This then uniquely yields the chirally invariant
result

〈Bμ〉l.o. =
1

24π2
εμνρσ trF

{[
U †∂νU

] [
U †∂ρU

] [
U †∂σU

]}
. (C.17)

which is nothing but the topological or winding number current.
The Skyrme soliton picture of baryons makes extensive use of and strongly

relies on the above identification of the baryon current. For the derivation of
that relation spontaneous chiral symmetry breaking is essential as without
it, M (0) vanishes and the gradient expansion in (C.14) remains undefined.
For spontaneous chiral symmetry to occur it is necessary that Nf ≥ 2 since
otherwise the symmetry is anyhow broken by the anomaly. Thus, even though
the arguments put forward in favor of the soliton picture in Sect. 4.1 appear
to be valid for any number of flavors, a cogent consideration requires at least
two flavors.

C.2 Gauging the Wess–Zumino Term

In Sect. 2.4 we already encountered the non-local Wess–Zumino term,
see (2.50). This time we want to start from that action together with the
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transformation properties on the meson fields, (2.30), to show that the wind-
ing number current emerges as symmetry current for the baryon charge from
ΓWZ. A straightforward procedure to extract symmetry currents is to intro-
duce gauge fields to elevate global symmetries to local ones. The terms in the
gauged action that are linear in the gauge fields then determine the symmetry
currents. Unfortunately it is not straightforward to gauge the Wess–Zumino
term because the common description of introducing covariant derivatives
only works for local action functionals. Rather we have to construct the gauge
invariant action by a trial and error method. For our purposes (baryon current
and electromagnetic π0 decay) it is sufficient to only consider UV(1) symme-
tries and thus abelian gauge fields. This simplifies matters considerably. The
result for the general non-abelian case is given in the literature [3, 4].

First of all, we simplify the notation by introducing alternating differential
forms, α = αμdxμ, d = ∂μdxμ, αβ = αμβν dxμ ∧ dxν , etc. In that notation
the Wess–Zumino term is compactly written as

ΓWZ = − iNC

240π2

∫

5

tr
(
α5
)
. (C.18)

Here the integral is over a five-dimensional manifold with Minkowski space as
boundary. With respect to vector symmetries, L = R = 1+iεQ+ · · · in (2.30),
the variation of the chiral field is given by the commutator,

δU = iε[Q,U ] (C.19)

where ε parameterizes the infinitesimal transformation and Q is the generator
of the considered UV(1) symmetry. We assume ε to be a local quantity,

δα = iε[Q,α] + idε
(
U †QU −Q

)
. (C.20)

Note that δα is a differential one-form. When substituting into δ
∫

tr(α5) =
5
∫

tr(δαα4) the first term of (C.20) does not contribute as it merely reflects
the global symmetry. The variation due to the derivative term is

δΓWZ =
NC

48π2

∫

5

dε tr
[(
U †QU −Q

)
α4
]

= − NC

48π2

∫

5

dε tr
[
Q
(
α4 − β4

)]
.

(C.21)

where βμ = U∂μU
† = −UαμU †. By pure definition we have α4 = −d(α3) and

β4 = −d(β3). Thus

δΓWZ =
NC

48π2

∫

5

dε d tr
[
Q
(
α3 − β3

)]
= − NC

48π2

∫

4

dε tr
[
Q
(
α3 − β3

)]

(C.22)

by Stoke’s theorem. Obviously the non-local Wess–Zumino term is not gauge
invariant but the gauge variation is local. We introduce a gauge field, Aμ to
compensate for δΓWZ,
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Γ(1)
WZ = − iNC

240π2

∫

5

tr
(
α5
)

+
NC

48π2

∫

4

A tr
[
Q
(
α3 − β3

)]
, (C.23)

with δAμ = ∂με. Hence Γ(1)
WZ is invariant to O(Q), but not completely as the

explicit calculation exhibits

δΓ(1)
WZ =

iNC

24π2

∫

4

Adε tr
[
Q2
(
α2 − β2

)
+QdUQdU †]

=
iNC

24π2

∫

4

ε dA tr
[
Q2 (α− β) + 1

2

(
QdUQU † −QUQdU †)] . (C.24)

Here it has, e.g., been used that
∫

tr [QαQα] = 0, as a reflection of the anti-
symmetric nature of differential forms. In addition, the freedom in re-writing
the QdUQdU † term has been fixed by demanding invariance with respect to
parity U ↔ U † [4]. Again, we add a term, now quadratic in Aμ, to compensate
for the variation δΓ(1)

WZ,

Γ(2)
WZ = − iNC

240π2

∫

5

tr
(
α5
)

+
NC

48π2

∫

4

A tr
[
Q
(
α3 − β3

)]

+
iNC

24π2

∫

4

AdA tr
[
Q2 (α− β) + 1

2

(
QdUQU † −QUQdU †)] . (C.25)

It is now straightforward to verify that the last term in square brackets is
indeed gauge invariant and so is Γ(2)

WZ. The term linear in A contributes to the
Noether current; cf. last term in (5.46).

As indicated above, this result can be utilized to obtain the baryon current
by setting Q = 1/NC, the baryon charge of a quark in a world with NC color
degrees of freedom. The term linear in the gauge field (second term in (C.25))
yields,

Bμ =
1

48π2
εμνρσtr [(αναρασ − βνβρβσ)] =

1
24π2

εμνρσtr [αναρασ] , (C.26)

which, as expected, is the same result as obtained from the quark loop in lead-
ing order, (C.17). This identity, of course, indirectly proves that the imaginary
part of the Euclidean fermion determinant leads to the Wess–Zumino term
in the effective meson theory. In (C.25) the terms quadratic in A vanish for
Q ∝ 1.

Note, however, that a kind of miracle occurred in deriving (C.26). For the
Q ∝ 1 there is no variation of U as in (C.19), hence one would not expect one
for the Wess–Zumino term either. Nevertheless a variation occurred in (C.21)
in form of a total derivative. In a local theory this would just be fine as
such total derivatives would be discarded. Here it is not the case as this total
derivative term of the non-local theory contributes locally in four dimensional
Minkowski space. This is just one of many examples indicating that it is dan-
gerous to use intuition from local theories to manipulate the Wess–Zumino
term. As a rule of thumb, it is unavoidable to perform calculations explic-
itly. For this end it is occasionally helpful to write U(x) = V (x)U0(x)V †(x)
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with all matrices defined on the five-dimensional manifold. Using that param-
eterization and applying once again Stoke’s theorem the Wess–Zumino term
becomes [5]

ΓWZ[U ] =
−iNC

240π2

∫

5

tr[υ + U0(α0 − υ)U †
0 ]5

= ΓWZ[U0] −
iNC

48π2

∫

4

tr
[
α3

0υ − υ3α0 −
1
2
(α0υ)2 + U0(α0 − υ)3U †

0υ

−υ3U0(α0 − υ)U †
0 − 1

2
[υU0(α0 − υ)U †

0 ]2
]

= ΓWZ[U0] −
iNC

48π2

∫

4

tr[α3
0(υ + U †

0υU0)] + O(v2) , (C.27)

where αμ0 = U †
0∂

μU0 and υμ = V †∂μV . A significant simplification occurs
when V (x) depends on only a single coordinate, as it happens to be the case
in the collective coordinate approach to the SU(3) hedgehog, cf. (6.4). Then
only terms linear in vμ can contribute due to the anti-symmetric structure of
the alternating differential forms. This is indicated in the last line of (C.27).

C.3 Wess–Zumino Term in the Bound State Approach

In this section we prove that in the bound state approach the Wess–Zumino
term emerges exactly as shown in the last term of (6.39). For this end we
will show that the equation of motion (4.44) is the same as applying Euler–
Lagrange to (6.39). This is sufficient because the Wess–Zumino term has
mainly been introduced to provide that equation of motion. It is obvious
that the Skyrme term contributions may be ignored for this discussion. Nev-
ertheless, there is one caveat. Equation (4.44) is only one form of the equation
of motion. Equivalently we may write

− f2
π

2
∂μβ

μ + 5iλεμνρσβμβνβρβσ = 0 (C.28)

since βμ = −UαμU † and thus ∂μβμ = −U∂μαμU †. We have to find the proper
combination to identify the variation of (6.39). Using the parameterization
of (6.38) the term linear in Z from (4.44) reads

f2
π

2
{
∂2Z − 2i [vμ, ∂μZ] + [∂μrμ, Z] + [lμ, [rμ, Z]]

}

−40λεμνρσ [pμpνpρ, ∂σZ + [rμ, Z]] = 0 , (C.29)

with rμ = ξ†∂μξ and lμ = ξ∂μξ
†. Furthermore pμ and vμ are defined as

in Sect. 6.6, i.e., (4.62) with ξ → ξπ . This implies pμ = i
2 (lμ − rμ) and

vμ = i
2 (lμ + rμ). From (C.28) we find a similar equation of motion, with lμ

and rμ exchanged. Combining these two equations yields,
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f2
π

2

{
∂2Z − 2i [vμ, ∂μZ] − i [∂μvμ, Z] +

1
2

[lμ, [rμ, Z]] +
1
2

[rμ, [lμ, Z]]
}

−40λεμνρσ [pμpνpρ, ∂σZ − i [vμ, Z]] = 0 . (C.30)

In the isospin reduction we take the same symbols rμ, etc., to merely denote
their (non-zero) SU(2) entries. Since l · r + r · l = 2(p2 − v2) the equation of
motion for the isospinor K reads,

∂2K − 2ivμ∂μK − i(∂μvμ)K +
(
p2
μ − v2

μ

)
K

−80λ
f2
π

εμνρσp
μpνpρ (∂σ − ivσ)K = 0 . (C.31)

In the isospin reduction p2
μ and εμνρσp

μpνpρ are both pure isoscalar expres-
sions and we may replace them by the respective traces divided by 2. With
pμ = − i

2ξαμξ
† we finally obtain

∂2K − 2ivμ∂μK − i(∂μvμ)K − v2
μK +

1
2
tr
(
p2
μ

)
K

+
iNC

2f2
π

Bμ (∂μ − ivμ)K = 0 , (C.32)

where we have inserted λ = −NC
240π2 and used the definition of the baryon cur-

rent, (C.26). Similarly an equation of motion for K† can be extracted from
(C.30); it is merely the hermitean conjugate of (C.32). It is now a matter
of simple algebra to verify that the Euler–Lagrange equations from (6.39)
give the same equation of motion (apart from Skyrme and mass terms). This
proves the form of the Wess–Zumino term in (6.39) correct. We had to combine
the equations of motion in the two equivalent forms, (4.44) and (C.28) sim-
ply because the variation for obtaining the kaon equation of motion requires
an infinitesimal axial transformation, δU(x) = {ε(x), U(x)}, to maintain its
pseudoscalar nature. A right transformation only as in (4.41) in general sup-
plements scalar modes.

C.4 π0 Decay

On the fundamental level of quark–photon interactions the π0 decay is de-
scribed by the Feynman diagrams in Fig. C.1. In these diagrams the pion
is represented by an axial current via the PCAC relation, cf. Sect. 2.5. The
two fermion axial current vertices contain γ5 and any symmetry-conversing
regularization of the fermion loop momentum shows that the two diagrams
do not cancel each other as one would näıvely find if the diagrams were su-
perficially finite. This anomalous non-cancellation gives a non-zero result for
the π0 decay width. We will now work out how such a result emerges in the
effective meson theory from the Wess–Zumino term.
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Aμ

γ γ

(0)
Aμ

(0)

γ γ

Fig. C.1. Feynman diagrams that describe the π0 decay. Here A
(0)
µ is the (electri-

cally neutral) axial current that represents (derivative of) the pion field

From the last term in (C.25) we compute the width for the decay π0 → γγ
because it contains the coupling of a pseudoscalar meson to two gauge bosons.
To gauge with respect to the electromagnetic interaction we first conclude
from the baryon number of a single quark Bq = 1

NC
that the charges of the up

and down quarks are Qu = e
2

(
1
NC

+ 1
)

and Qd = e
2

(
1
NC

− 1
)

where e is the

elementary electric charge. In the case of two light flavors1 we therefore set

Q =
e

2

(
τ3 +

1
NC

1

)
. (C.34)

We expand the chiral field in powers of the physical pion field U = 1+iτ ·π/fπ
and find the relevant interaction Lagrangian after integration by parts

Lπγγ = − NCe
2

24π2fπ
εμνρσ∂

μAν∂ρAσtr
[
3Q2τ · π

]
= − π0

8π2fπ
εμνρσ∂

μAν∂ρAσ .

(C.35)

Using standard techniques of second quantization we obtain the transition
matrix element for the decay of the neutral pion into two photons,

Mfi =
e2

4π2fπ
εμνρσk

μ
1 ε

∗ν(k1, λ1)k
ρ
2ε

∗σ(k2, λ2)(2π)4δ(p− k1 − k2)

=: (2π)4δ(p− k1 − k2)Tfi . (C.36)

1 For Nf = 3 we furthermore have Qs = e
2

(
1

NC
− 1
)

for the charge of the strange

quark and hence

Q =
e

2

[
λ3 +

1√
3
λ8 +

(
1

NC
− 1

3

)
1

]
. (C.33)

With λ8/
√

3 = Y = NCB̂/3 + Ŝ and 1 = NCB̂ we have Q = (2Î3 + B̂ + Ŝ)/2
and the charge of any hadron is unambiguously determined by its flavor quantum
numbers as for NC=3.
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The pion momentum is p and the photons have momenta k1 and k2 with
polarizations λ1 and λ2, respectively, and ε∗ν(ki, λi) are the corresponding
polarization vectors. The decay width Γ is computed by squaring Tfi, summing
over the polarizations of the final photons, taking care of total momentum
conservation and integrating over the available phase space of the two photons.
Note that a factor 1/2 arises to comply with Bose statistics of the decay
products,

Γ =
1

2mπ

1
2

∑

λ1λ2

∫
d3k1

(2π)32k0
1

d3k2

(2π)32k0
2

(2π)4δ4(p− k1 − k2)|Tfi|2 . (C.37)

The integrals are most conveniently evaluated in the pion rest frame that
is defined by setting the pion momentum to pμ = (mπ,0)μ, and implies
kμ1,2 = (ω,±k)μ for the photon momenta. Hence

Γ =
α2m3

π

32π2fπ

∫
dω δ (mπ − 2ω)

∫
d2k

4π2
=

α2m3
π

64π3fπ
, (C.38)

where α = e4/4π = 1/137 is the QED fine structure constant. Inserting
numerical values yields Γ ≈ 7.6 eV. This compares reasonably well with the
experimental value, Γ = (8.2 ± 0.6) eV [6]. This is, of course, one of the most
striking empirical evidences for the relevance of the Wess–Zumino term.

The final result, (C.38), obtained by gauging the Wess–Zumino term, coin-
cides with that deduced from the triangle anomaly in the microscopic fermion
theory in conjunction with PCAC to identify the pion field [7]. The corre-
sponding Feynman diagrams are depicted in Fig. C.1. For this identification,
the coefficient of the Wess–Zumino term is crucial, in particular its NC de-
pendence that arises from NC fermions running through the loop. In reversing
the line of arguments, Witten [3] concluded that the integer in (4.49) had to
equal NC.
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Appendix D

SU (3) Euler Angles

In this appendix, we display the explicit forms of the right SU(3) generators
Ra (a = 1, .., 8) in terms of differential operators with respect to SU(3) “Eu-
ler angles” [1]. The current presentation briefly summarizes the calculations
of [2, 3].

An appropriate definition of the SU(3) Euler angles is given by parame-
terizing the collective flavor rotations (6.4) via

A = e−i(α/2)λ3e−i(β/2)λ2e−i(γ/2)λ3e−iνλ4

×e−i(α′/2)λ3e−i(β′/2)λ2e−i(γ′/2)λ3e−i(ρ/
√

3)λ8 . (D.1)

This is merely the SU(3) generalization of (5.12). The group manifold is com-
pletely covered by varying the angles α, β, ..., ρ according to

0 ≤ α, γ, α′, γ′ < 2π, 0 ≤ β, β′ < π, 0 ≤ ν < π/2, 0 ≤ ρ < 3π. (D.2)

Since the SU(3) generators are linear operators, they may in general be writ-
ten as linear combinations of differential operators [4, 5]

Ra = idba(α)
∂

∂αb
, (D.3)

where α = (α1, α2, ..., α8) = (α, β, ..., ρ) compactly refers to the eight “Euler
angles.” The coefficient functions dab(α) will be extracted from the defining
equation of the SU(3) algebra

ARaA
† =

1
2
AλaA

† =
1
2
λbDba(α). (D.4)

As in (5.32), Dab denotes the adjoint representation of the rotation matrix A.
The explicit computation of the derivatives defines

Mbc(α) =
1
2
tr
[
λbAi

∂

∂αc
A†
]
. (D.5)
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We use this to compute the left hand side of (D.4) and read off the coefficients

dab(α) =
(
M−1(α)

)
ac
Dcb(α) (D.6)

and substitute them into (D.3). Then the explicit expressions for the genera-
tors are

R1 = i
cos γ′

sinβ′
∂

∂α′ − i sinγ′
∂

∂β′ − i cos γ′cotβ′ ∂
∂γ′

,

R2 = −i
sinγ′

sinβ′
∂

∂α′ − i cos γ′
∂

∂β′ + i sin γ′ cotβ′ ∂
∂γ′

,

R3 = −i
∂

∂γ′
,

R4 = − i sin
(
γ − ρ+ α′−γ′

2

) sinβ
′

2

sinβ sin ν
∂

∂α
− i cos

(
γ − ρ+ α′−γ′

2

) sinβ
′

2

sin ν
∂

∂β

− i

[

2 sin
(
ρ+ α′+γ′

2

) cosβ
′

2

sin 2ν
− sin

(
γ − ρ+ α′−γ′

2

)
cotβ

sinβ
′

2

sin ν

]
∂

∂γ

− i
2
cos
(
ρ+ α′+γ′

2

)
cos

β′

2
∂

∂ν
− 3i

4
sin
(
ρ+ α′+γ′

2

)
tan ν cos

β′

2
∂

∂ρ

+
i
2
sin
(
ρ+ α′+γ′

2

)[

cos
β′

2
tan ν +

cot ν
cosβ

′
2

]
∂

∂α′

+ i cos
(
ρ+ α′+γ′

2

)
cot ν sin

β′

2
∂

∂β′ +
i
2
sin
(
ρ+ α′+γ′

2

) cot ν
cosβ

′
2

∂

∂γ′
,

R5 = i cos
(
γ − ρ+ α′−γ′

2

) sinβ
′

2

sinβ sin ν
∂

∂α
− i sin

(
γ − ρ+ α′−γ′

2

)sinβ
′

2

sin ν
∂

∂β

− i

[

2 cos
(
ρ+ α′+γ′

2

) cosβ
′

2

sin 2ν
+ cos

(
γ − ρ+ α′−γ′

2

)
cotβ

sinβ
′

2

sin ν

]
∂

∂γ

+
i
2
sin
(
ρ+ α′+γ′

2

)
cos

β′

2
∂

∂ν
− 3i

4
cos
(
ρ+ α′+γ′

2

)
tan ν cos

β′

2
∂

∂ρ

+
i
2
cos
(
ρ+ α′+γ′

2

)
[

cos
β′

2
tan ν +

cot ν
cosβ

′
2

]
∂

∂α′

− i sin
(
ρ+ α′+γ′

2

)
cot ν sin

β′

2
∂

∂β′ +
i
2
cos
(
ρ+ α′+γ′

2

) cot ν
cosβ

′
2

∂

∂γ′
,

R6 = −i sin
(
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∂
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+
i
2
cos
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ρ+ α′−γ′

2

)
sin

β′

2
∂

∂ν
+

3i
4

sin
(
ρ+ α′−γ′

2

)
tan ν sin

β′

2
∂

∂ρ

− i
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sin
(
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2

)
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β′

2
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cot ν
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′
2
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∂

∂α′

+ i cos
(
ρ+ α′−γ′

2
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β′

2
∂

∂β′ +
i
2
sin
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ρ+ α′−γ′

2

) cot ν
sinβ

′
2

∂

∂γ′
,

R7 = i cos
(
γ − ρ+ α′+γ′

2

) cosβ
′

2

sinβ sin ν
∂

∂α
− i sin

(
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′

2
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[
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(
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)
sin
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2
∂

∂ν
+

3i
4

cos
(
ρ+ α′−γ′

2

)
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β′

2
∂

∂ρ

− i
2
cos
(
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2
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sin
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2
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cot ν
sinβ

′
2
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∂

∂α′

− i sin
(
ρ+ α′−γ′

2
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∂

∂β′ +
i
2
cos
(
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2

) cot ν
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∂

∂γ′
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R8 = − i
√

3
2

∂

∂ρ
. (D.7)

Here we also want to outline how the eigenvalue problem for the collec-
tive Hamiltonian (6.26) reduces to coupled differential equations for functions
which only depend on the strangeness changing angle ν. Up to the normal-
ization, a suitable decomposition of the baryon wave functions is given by [1]

Ψ(I, I3, Y ; J, J3, YR) =
∑

ML,MR

D
(I)∗
I3,ML

(α, β, γ)f (I,Y ;J,YR)
ML,MR

(ν)

× eiYRρD
(J)∗
MR,−J3

(α′, β′, γ′). (D.8)

The D-functions refer to SU(2) Wigner functions. It is important to note
that the sums over the intrinsic spins (MR = −J,−J + 1, ..., J) and isospins
(ML = −I,−I+1, ..., I) are subject to the constraint ML−MR = (Y −YR)/2.
Using the explicit forms for the SU(3) generators (D.7), the action of the
quadratic Casimir operator C2 =

∑8
a=1R

2
a on the baryon wave function (D.8)

is found to be

C2Ψ(I, I3, Y ; J, J3, YR) =
∑

ML,MR

D
(I)∗
I3,ML

(α, β, γ)eiYRρD
(J)∗
J3,MR

(α′, β′, γ′)

×
{

− 1
4

[
d2

dν2
+ (3 cot ν − tan ν)

d
dν

]
+
I2 + J2

sin2ν
+

M2
L

cos2ν
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+
M2

R

4

(
3 +

1
cos2ν

)
− 1 + cos2ν

sin2ν cos2ν
MLMR +

3YRML

2 cos2ν

−3
1 + cos2ν
4 cos2ν

YRMR +
(3

4
+

9
16

tan2ν
)
Y 2

R

}

f
(I,Y ;J,YR)
ML,MR

(ν)

− cos ν
sin2ν

√
(I +ML + 1) (I −ML) (J +MR + 1) (J −MR) f (I,Y ;J,YR)

ML+1,MR+1(ν)

− cos ν
sin2ν

√
(I −ML + 1) (I +ML) (J −MR + 1) (J +MR) f (I,Y ;J,YR)

ML−1,MR−1(ν) .

(D.9)

Obviously, the dependence on the angles other than ν can be factorized leaving
a set of coupled ordinary differential equations in the variable ν. This becomes
even more transparent by displaying the ν dependence of the dominating
symmetry breaking term in the collective Hamiltonian (6.26):

1 −D88 =
3
2
sin2ν. (D.10)

Equation (D.9) also illustrates how the intrinsic functions f (I,Y ;J,YR)
ML,MR

(ν) de-
pend on the spin and isospin quantum numbers.

The eigenvalue equation C2Ψ = μΨ yields the flavor symmetric SU(3)
D-functions, which correspond to states in irreducible representations. As an
example, we display the non-vanishing intrinsic isoscalar functions for the
baryon octet with YR = 1 and μ = 3 [5].

N : f
1
2 ,1;

1
2 ,1

1
2 ,

1
2

(ν) = cos2ν , f
1
2 ,1;

1
2 ,1

− 1
2 ,− 1

2
(ν) = cos ν ;

Σ : f
1,0; 12 ,1

0, 12
(ν) =

1√
2
cos ν sin ν , f

1,0; 12 ,1

−1,− 1
2
(ν) = sin ν ;

Λ : f
0,0; 12 ,1

0, 12
(ν) =

√
3
2
sin ν cos ν ; Ξ : f

1
2 ,−1; 12 ,1

− 1
2 ,

1
2

(ν) = sin2ν . (D.11)

All other octet isoscalar functions vanish because of the constraintML−MR =
(Y − 1)/2. The normalization is always such that

∫ π
2

0

dν sin 2ν sin2ν
∑

MLMR

[
f

(I,Y ;J,YR)
ML,MR

(ν)
]2

=
(2J + 1)(2I + 1)

16
. (D.12)

Obviously, none of these wave functions vanish except at the boundaries ν =
0, π/2. This is, of course, a special feature of the ground states, which reside in
the octet representation. The isoscalar wave functions associated with baryons
in higher dimensional representations, which carry the same physical quantum
numbers (I, J, Y ), may well develop nodes.

When the eigenvalue problem is augmented by symmetry breaking terms,
the intrinsic function deviate from (D.11) such that they get more pronounced
at small ν, i.e., rotations into the direction of strangeness are suppressed. This
can also be deduced from Fig. D.1, where the dependencies of the nucleon
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Fig. D.1. The dependencies of the nucleon scalar functions on the strangeness
changing angle ν for two values of the symmetry breaking. The case γβ2 = 0 should
be compared with the expressions for (N) in (D.11)

isoscalar functions f
1
2 ,1;

1
2 ,1

± 1
2 ,± 1

2
(ν) are displayed for the symmetric case, γβ2 = 0,

as well as for sizable symmetry breaking γβ2 = 5. We note that this di-
agonalization approach can indeed be generalized to arbitrary (odd) NC by
implementing the constraint YR = NC

3 [6] in (D.9).
Finally, we add a few comments on the treatment of the slow rotator

discussed in Sect. 6.5. In a first step, the explicit form (D.9) for the Casimir op-
erator is used in order to express the Hamiltonian, (6.37), as a second-order dif-
ferential equation for the isoscalar functions f (I,Y ;J,YR)

ML,MR
(ν), which are defined

in equation (D.8). These coupled differential equations are then integrated
by standard means. In order to evaluate matrix elements, one again employs
the decomposition equation (D.8) to reduce them to expressions which only
contain functions of the strangeness changing angle ν and f (I,Y ;J,YR)

ML,MR
(ν). The

final result is obtained by integrating with respect to the measure, cf. (D.12),

∫ π
2

0

dν sin 2ν sin2ν
{
· · ·
}
. (D.13)

As an example, we present the V1 contribution in (7.7) to the proton magnetic
moment,

μp = −8π
3
MN

∫ π
2

0

dν sin 2ν sin2ν m1(ν)

×
{

2
3
sin2ν

((
f

1
2 ,1;

1
2 ,1

1
2 ,

1
2

(ν)
)2

−
(
f

1
2 ,1;

1
2 ,1

− 1
2 ,− 1

2
(ν)
)2
)

−2
9

[ (
1 + cos2ν

)((
f

1
2 ,1;

1
2 ,1

1
2 ,

1
2

(ν)
)2

+
(
f

1
2 ,1;

1
2 ,1

− 1
2 ,− 1

2
(ν)
)2
)

+8 cosνf
1
2 ,1;

1
2 ,1

1
2 ,

1
2

(ν)f
1
2 ,1;

1
2 ,1

− 1
2 ,− 1

2
(ν)
]
}

. (D.14)
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The ν dependence of m1 is purely due to the implicit dependence of the chiral
angle F = F (r, ν):

m1(ν) =
∫ ∞

0

drr2sin2F

[
f2
π +

1
e2

(
F ′2 +

sinF
r2

)
+

2
3
(f2
K − f2

π) cosF
]
.(D.15)

Here a prime indicates a derivative with respect to the radial coordinate, i.e.,
F ′ = ∂F (r, ν)/∂r.
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Appendix E

Matrix Elements of Momentum Eigenstates

In this appendix we review the evaluation of matrix elements between mo-
mentum eigenstates of the soliton that are needed to compute the current
matrix elements in Chap. 7. Mostly we will follow the discussion of [1].

E.1 Momentum Eigenstates from Collective Coordinates

In Chapters 5 and 6 we have extensively discussed how to generate states with
good flavor quantum numbers from the soliton by means of collective coor-
dinate quantization. However, this is not sufficient to compute form factors.
To this end we also need eigenstates with good momentum. The conjugate
coordinate is the translation of the soliton and we again introduce respective
collective variables, X(t) to parameterize the time-dependent chiral field,

U(x, t) = U0 (x − X(t)) , (E.1)

where U0 refers to the hedgehog configuration of (4.23). Due to translational
invariance, the Lagrangian that emerges from substituting the configuration,
(E.1), will depend on X(t) only through its time derivative V = Ẋ(t). For
the time being and simplicity we omit collective coordinates for the flavor
orientation of the soliton for the following reason. As long as we consider
effective meson Lagrangians with at most two time derivatives, the coupling
between translational and rotational modes can only be proportional to V ·Ω,
where Ω is the angular velocity defined in (5.16). Such a coupling is odd
under parity and thus disallowed. The Lagrange function obtained for the
configuration (E.1) has the general structure

L(V ) = −Ecl +
1
2
MtransV

2 , (E.2)

where Ecl is the classical soliton mass and Mtrans is also a functional of the
soliton profiles. In case of the Skyrme model one finds Mtrans = 2

3 (M2 + 2M4)
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where M2 and M4 are the contributions to Ecl from Lnlσ, (4.22), and LSk,
(4.26), respectively. In the absence of the mass term, simple scaling argu-
ments [2] show that the stationary condition for the soliton implies M2 =
M4 = Ecl/2 and thus Mtrans = Ecl. In a more general framework we note that
(E.1) is merely the non-relativistic form of the Lorentz boost UH(Λ(V ) · x)
with Λ(V ) being the 4 × 4 matrix that parameterizes the boost of a four-
vector such as x = (t,x). Since the Lagrangian density is a Lorentz scalar,
the only effect of V = 0 on L arises from the volume integration yielding
a factor

√
1 − V 2 on Ecl. Expansion with respect to V immediately shows

Mtrans = Ecl, an identity that we will henceforth adopt.
The conjugate momentum is

P =
∂L(V )
∂V

= EclV . (E.3)

The quantization of P is just that of a free non-relativistic particle with the
dispersion relation E = Ecl + P 2

2Ecl
. The full wave function for a baryon B

becomes
〈B; P ; I, J, . . . |X;A〉 = N e−iX·PDI,J,...(A) , (E.4)

where we have reintroduced the rotational degrees of freedom and N is a
normalization factor that must be chosen compatible with the normalization
of the spinor in (7.4). Its value depends on whether we take A ∈ SU(2) or
A ∈ SU(3). Here we do not further specify N nor the Wigner D-functions.

To compute form factors we have to evaluate matrix elements of the form

〈B; P ; I, J, . . . |v(0)|B′,P ′; I ′, J ′, . . .〉 , (E.5)

where v(0) is some current operator to be evaluated at the origin x = (x, t) = 0
because the translational piece of matrix element is commonly factored out in
the definition of form factors [3]. Within soliton models, the parameterization
(5.13) (or its SU(3) generalization, (6.4)) and (E.2) formally yield the current
operator

v(x, t) =
∑

i

fi (x − X(t))Oi(A) , (E.6)

that is, a sum of products in which one factor depends on the spatial and the
other on the rotational coordinates. We thus find

〈B; P ; I, J, . . . |v(0)|B′,P ′; I ′, J ′, . . .〉 =∫
d3Xd3X ′

∫
dA
∫

dA′〈B; P ; I, J, . . .〉〈X,A|v(0)|X ′A′〉〈B′,P ′; I ′, J ′, . . .〉

= NN ′∑

i

∫
d3XeiX·qfi (−X(t))

∫
dAD∗

I,J,...(A)Oi(A)DI′,J′,...(A) , (E.7)

where q = P − P ′ is the momentum transfer. The second integral (over dA)
concerns the spin-flavor degrees of freedom and is processed with techniques
described in Chapters 5 and 6, as well as the previous appendix. We read



E.2 Relativistic Recoil Corrections 261

off quite a simple recipe to handle the linear momentum part of the matrix
element: just take the Fourier transformation with respect to (minus) the
momentum transfer of the coordinate-dependent factors in the decomposition
of the current operators after substituting the soliton configuration. Of course
that is precisely reflected by the spherical Bessel function appearing, e.g., in
(7.7). In general we may choose any frame to do these calculation. However,
it turns out that the Breit frame with,

P = −P ′ =
q

2
and q0 = 0 (E.8)

is particularly suited not only because it properly reflects the zero energy
transfer onto an infinitely heavy (largeNC) soliton but also because it directly
connects the electric form factor, GE and the magnetic form factor, GM to
the time and spatial components of the electromagnetic current, respectively.
Specifically, for baryons with spin 1

2 we find the Sachs form factors from the
matrix elements

〈B′|J0(0)|B〉 = GE(q2)〈s′3|s3〉
〈B′|J i(0)|B〉 =

−i
MB

GM(q2)εijkqj〈s′3|Sk|s3〉 . (E.9)

Here S is the spin operator and |s3〉 indicates the state with spin projection
quantum number s3 = ± 1

2 .

E.2 Relativistic Recoil Corrections

The formalism discussed above does not take into account recoil corrections.
However, they should be significant for momentum transfers of the order of the
nucleon mass and larger. Here we will sketch an approach to incorporate these
corrections by means of a covariant formulation [4]. The resulting physics is
discussed in Sect. 7.2.

The basic idea is to construct a classical moving soliton from the static
solution by a Lorentz boost. This is rendered possible because of the covariance
of the field equations. As results we will (i) gain a relativistic generalization
of (E.3) and (ii) compute the current operators for the relativistically moving
soliton. It is convenient to choose a frame such that the boosted coordinates
are

x′ = γ(x− V t) , y′ = y and z′ = z , (E.10)

with γ = 1/
√

1 − V 2. With regard to the discussion in Sect. E.1, V t should be
considered as the collective coordinate. For simplicity of presentation we again
refrain from making the rotational coordinates explicit. As already mentioned,
the Lagrange function L =

∫
d3xL for the boosted soliton

U(x, t) = U0(x′) (E.11)
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acquires the factor 1/γ when compared to the V = 0 case. Hence the
momentum is

P = γV Ecl with V = V ex . (E.12)

Upon quantization P is elevated to an operator. The analog of f(X(t)) in
(E.7) for the isoscalar density is (at t = 0 as required for matrix elements)

J0(X) = γJ0
nr(γX, Y, Z) (E.13)

where the subscript indicates the functional form of the unboosted (non-
relativistic) isoscalar density. The computation of matrix elements as in (E.9)
becomes complicated because J0(X) is a highly non-linear function of the
momentum operator P which induces operator ordering ambiguities. Here
again the use of the Breit frame is helpful because γ only depends on P 2 and
thus its application on |B〉 and |B′〉 gives identical results. Therefore it is well
justified to replace γ by a c-number [4]. In particular we find

1 − V 2 =
1

1 + q2

4Ecl

. (E.14)

With these tools at hand we compute

〈B′|J0|B〉 ∼ GE(q2x)

=
∫

d3XeiqxXγJ0
nr(γX, Y, Z) =

∫
d3XeiqxX/γJ0

nr(X,Y, Z)

= GE,nr

(
q2x
γ2

)
, (E.15)

where we have ignored constants arising from the normalization. Next we
consider the spatial components of the current, J i. Since in the chosen frame
the velocity is along the X axis and we quantize the baryons to be eigenstates
of S3 it is obvious that only

J2(X) = (γX)J2
nr(γX, Y, Z)S3 , (E.16)

has a non-vanishing matrix element. Hence we find

qxGM(q2x) ∼
∫

d3XeiqxX(γX)J2
nr(γX, Y, Z) =

1
γ

∫
d3XeiqxX/γXJ2

nr(X,Y, Z)

∼ 1
γ

(
qx
γ

)
GM,nr

(
q2x
γ2

)
. (E.17)

Using (E.14) and returning to a frame-independent formulation suggests the
identifications [4]

GE(Q2) = GE,nr

(
Q2

1 + Q2

4M2

)
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GM(Q2) =
1

1 + Q2

4M2

GM,nr

(
Q2

1 + Q2

4M2

)

. (E.18)

We have replaced the classical soliton mass by the baryon mass, which is a
self-suggesting approximation to find a model-independent mapping of the
non-relativistic (rest frame) form factors to the relativistic ones.
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Appendix F

Recoupling Coefficients in Adiabatic Scattering

In this appendix, some technicalities concerning the computation of the
S-matrix for meson fluctuations about the soliton are discussed.

F.1 Adiabatic Recoupling Coefficients

We first derive the recoupling coefficients that transform the intrinsic S-matrix
to the laboratory frame, as used in Sect. 8.1. We present that derivation
here because it merely relies on the conservation of the grand spin (see the
explanations after (8.4) for detailed definitions)

G = J + I = L + S + I (F.1)

in the intrinsic frame. This conservation reflects a symmetry of QCD at large
NC and is thus more general than the soliton models [1]. Soliton models must
satisfy that property because they are consistent with large NC QCD. We will
first consider the most simple case of pion–baryon scattering in flavor SU(2)
and then describe obvious generalizations.

We start by considering the fluctuations as in (8.1) to relate fluctuations
in the intrinsic frame to those in the laboratory frame:

U(x, t) = A exp [iτ · x̂F (r) + iτ · η(x, t)] A†

= exp
[
iAτ · x̂F (r)A† + iτ · ξ(x, t)

]
. (F.2)

This implies
ην(x, t) =

∑

ν′
D1
ν,ν′(A)ξν′ (x, t) , (F.3)

where D1
ν,ν′ is the (iso)spin one representation of the collective rotations A.

Pion fluctuations are labeled by angular momentum (L,m) and isospin
projection ν. In SU(2), the soliton models describe baryons with identical spin
and isospin. For the time being we call that quantum number s. The respective

H. Weigel: Recoupling Coefficients in Adiabatic Scattering, Lect. Notes Phys. 743, 265–270
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projection quantum numbers (σ, τ) may assume different values. We have to
couple pion and baryon states to total spin (J,M) and isospin (I, I3),

|(Ls)JM ; (1s)II3〉 =
∑

mσντ

CJMLm,sσC
II3
1ν,sτ |Lm, ν〉L

√
2s+ 1
8π2

(−1)s+τ Ds
σ,−τ ,

(F.4)
because the pion has unit isospin. The C’s are Clebsch–Gordan coefficients and
the last factor represents the Wigner D-function for the baryon. This function
arises from quantizing the collective coordinates as discussed in Sect. 5.3. The
subscript on the pion points out that it is in the laboratory frame. The pion
state in the intrinsic (or body-fixed) frame, that is related to the pion state
in the laboratory frame by the rotation (F.3)

|Lm, ν〉B =
∑

ν′
D1
ν,ν′ |Lm, ν′〉L, (F.5)

carries the same quantum numbers. We still have to relate these states to
the fluctuations that appear in the differential equations (8.3). The latter
possess good grand spin (F.1). It arises from coupling the fluctuations’ angular
momentum and isospin so that the grand spin states are given by

|GG3, L〉 =
∑

mν

CGG3
Lm,1ν |Lm, ν〉B . (F.6)

The states with good total spin and isospin that we obtain from the grand
spin states are therefore

|L(GI)JM ; II3〉 =
∑

G3I′3

CJMGG3,II′3
|GG3, L〉DI

I′3,−I3 . (F.7)

The main task in finding the recoupling coefficients is to relate the states
in (F.4) and (F.7). This is mainly a matter of arranging Clebsch–Gordan
coefficients and the result is [2]

〈L(GI)JM ; II3|(Ls)JM ; (1s)II3〉 = (−1)L+s+JĜŝ

{
I 1 s
L J G

}
, (F.8)

where we have defined Ĝ =
√

2G+ 1, etc. The object in curly brackets denotes
a 6–j symbol that summarizes Clebsch–Gordan coefficients, cf. [3]. We obtain
the above recoupling coefficient from (8.8) when we set sφ = 0 and Iφ = 1. To
derive the corresponding generalization from (F.8), we need to (i) replace the
orbital angular momentum of the meson by its spin j, where j = L + sφ, and
(ii) introduce a label (Iφ) to identify its isospin. Hence, we need to consider
the coupling scheme {[

(Lsφ)j s
]

J
(Iφs)I

}

G

in the laboratory frame. The subscripts refer to the quantum number to which
the quantities in the respective parenthesis are coupled. Equation (F.6) tells
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us that the grand spin should now be the vector sum j + Iφ. Hence, we need
to generalize (F.7) to the coupling scheme

{[
(Lsφ)j Iφ

]

G
I
}

J

in the intrinsic frame. As before, the baryon quantum numbers do not ex-
plicitly appear in this scheme. This must be so because the corresponding
S-matrix is computed from (8.3) which does not contain them either. Thus,
the recoupling coefficient from (F.8) turns into

〈{[
(Lsφ)j s

]

J
(Iφs)I

}

G

∣
∣
∣
{[

(Lsφ)j Iφ
]

G
I
}

J

〉
= (−1)L+s+JĜŝ

{
I Iφ s
j J G

}
.

(F.9)

Though this is the final result, it is not of the form encountered in (8.8).
This is due to a different intermediate coupling scheme that introduces the
total spin St = s+sφ rather than j in the laboratory frame as well as the in-
termediate grand spin K = L+Iφ in the intrinsic frame. That representation
is straightforwardly written in terms of the above basis states, as it merely
involves the definition and symmetries of 6–j symbols:

[
(ssφ)St

L
]

J
=
∑

j

(−1)2s+sφ+L+j Ŝtĵ

{
s sφ St

L J j

} [
(sφL)j s

]

J
,

[
(LIφ)K sφ

]
G

=
∑

j

(−1)2Iφ+sφ K̂ĵ

{
Iφ L K
sφ G j

} [
(Lsφ)j I

]

G
. (F.10)

Putting (F.9) and (F.10) together and utilizing the identity [3]
⎧
⎨

⎩

a b c
d e f
g h j

⎫
⎬

⎭
=
∑

s

(−1)sŝ
{
a b c
f j s

}{
d e f
b s h

}{
g h j
s a d

}
(F.11)

yields the result quoted in the main text (8.8).
Though we have merely considered two-flavor soliton models, the general-

ization to arbitrary isospin of the scattering meson grasps kaons as well. The
only condition is that the target baryon has identical spin and isospin. In par-
ticular, we may read off the recoupling coefficient for kaon–nucleon scattering
from (F.9) with j = L because the kaons carry spin zero and IK = 1

2 . These
coefficients are important when computing the width of exotic baryons [4],
which is discussed at length in Sect. 9.3.

F.2 Jost Function for Intrinsic Fluctuations

We will take the opportunity to sketch one out of several numerical techniques
for the computation of the intrinsic S-matrix, S̃G, that appears in (8.7). We
start from the second-order differential equation for radial functions ηGJ(r)
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in the grand spin decomposition (8.5). We define the vector η̃G whose entries
are the radial functions ηGJ (r), with all possible J values for a given G. This
vector obeys a matrix differential equation of the general form

{
1

d2

dr2
+

2
r
D

(1)
G (r)

d
dr

− 1
r2
KG + VG(r) + k2M(r)

}
η̃G = 0 . (F.12)

The coefficient functions are n × n matrices when n is the number of possi-
ble J values. These matrices stem from the Euler–Lagrange equation (8.3).
They are block-diagonal with respect to the parity associated with a given
channel, ηGJ . The radial dependences originate from the soliton profile that
acts as background potential about which the fluctuations scatter. The
matrices D(1) and M approach unity asymptotically. The matrix KG =
diag (J1(J1 + 1), . . . , Jn(Jn + 1)) contains the angular momentum part so
that VG(r) vanishes faster than 1/r2 as r → ∞. Furthermore, k is the
momentum associated with the dispersion relation for the conserved en-
ergy, ω =

√
k2 +m2, where m is the meson mass.1 The appearance of the

coordinate-dependent metric function M is unconventional. In (8.13), we have
argued it to cause the ever-rising phase shifts at large momenta in the Skyrme
model of only pseudoscalar mesons [5]. In the baryon number zero sector,
i.e., when all soliton profiles take their vacuum expectation values, we have
D(1) ≡ 1, M ≡ 1 and VG ≡ 0.

In the next step, we elevate the n-component column vector η̃G to an
n × n matrix, NG: its columns contain the linearly independent solutions of
the second-order differential equation (F.12). In particular, we may consider
those that asymptotically behave like an incoming spherical wave in a given
channel,

HG(kr) = diag
(
h

(2)
J1

(kr), . . . , h(2)
Jn

(kr)
)
, (F.13)

where h(2)
� (kr) are spherical Hankel functions associated with orbital angular

momentum �. Asymptotically, they behave as h(2)
� (z) → (i�+1/z)e−iz when

z → ∞ [6]. Of course, HG(kr) is the free solution and we may take it as a
starting point for the exact solution by parameterizing,

NG(r) = FG(r) · HG(kr) . (F.14)

Essentially FG(r) is the matrix analog of the Jost function in scattering theory.
This n× n matrix is subject to the second-order differential equation

d2FG
dr2

+
2
r

dFG
dr

(1 + rLG) +
2
r

(
D

(1)
G − 1

)(dFG
dr

+ FGLG
)

− 1
r2

[KG,FG] + VGFG + k2 (M − 1)FG(r) = 0 . (F.15)

1 If mesons with different masses (m1 < m2) are involved, e.g., pions and vector
mesons, k2 must be considered as a diagonal matrix diag

(
ω2 −m2

1, . . . , ω
2 −m2

2

)
.

In the regime m1 < ω < m2, the associated k values are imaginary and the
corresponding wave functions are those of bound states, thereby describing closed
channels.
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Here LG =
(

d
drHG

)
· H−1

G contains the logarithmic derivatives of the Hankel
functions on the diagonal. Equation (F.15) seems complicated but it is easy
to see that FG = 1 is an asymptotic solution and also a solution when the
background potentials vanish.

When the boundary condition FG → 1 as r → ∞ is imposed, the matrix
NG contains the solutions that behave as incoming spherical waves. Further-
more, the coefficient functions in the differential equation (F.12) are all real;
thus the complex conjugate N ∗

G is a solution as well. So n of the 2n linearly
independent solutions are contained in NG and the remaining n are in N ∗

G.
Asymptotically, N ∗

G are outgoing spherical waves. This suggests to parame-
terize the scattering solution as

N (sc)
G = NG + N ∗

G · S̃G . (F.16)

Obviously, S̃G is the scattering matrix for the intrinsic fluctuations. We com-
pute it from the wave functions in FG by requiring that N (sc)

G is regular at
the origin, r → 0. Hence,

S̃G = − lim
r→0

[
(H∗

G)−1 · (F∗
G)−1 · FG · HG

]
(F.17)

provides the entry of (8.7). Technically, we integrate the differential equa-
tion (F.15) from sufficiently large r = R∞ with the boundary conditions
FG
∣
∣
r=R∞

= 1 and d
drFG

∣
∣
r=R∞

= 0 to the inside and read off limr→0 FG
from the numerical integration to compute S̃G via (F.17). The method de-
scribed here is a variant of the variable phase approach, which is exhaustively
discussed in [7].

For the application to the vacuum polarization energy in Sect. 8.6, we note
that the leading term of h(2)

� (kr) as r → 0 is purely imaginary. Therefore,
limr→0 HG(kr) · (H∗

G(kr))−1 = −1, and in each grand spin channel, the sum
of eigen phase shifts that appears in (8.57) is obtained from

δtotG (k) =
1
2i

lim
r→0

tr
[
(F∗

G)−1 · FG
]
. (F.18)

Finally, let us mention that the approach based on the differential equa-
tion (F.15) is well suited to set up the Born series [8, 9]. To do so, let us
introduce an artificial order parameter λ whose deviation from unity labels
the interaction strength, i.e.,

D
(1)
G − 1 = O (λ) , VG = O (λ) and M − 1 = O (λ) . (F.19)

Then we expand
FG = 1 + λF (1)

G + λ2F (2)
G + · · · (F.20)

and solve (F.15) order by order in λ. The boundary conditions are that all
F (n)
G and their derivatives vanish at spatial infinity. In this manner, the pieces
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in (F.19) act as source terms for F (1)
G , which in turn induces F (2)

G and so
on. At the end, we substitute the expansion (F.20) into (F.17) to extract the
nth order of the Born series for the scattering matrix as the coefficient of λn

in (F.17).
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